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ABSTRACT 

The internet era makes it appear outdated to monitor and identify influenza using traditional methods. 

Among the long-term public health problems that influenza might exacerbate include diabetes, asthma, 

congestive heart failure, sinus infections, ear infections, and bacterial pneumonia. Deep learning (DL) 

techniques for influenza identification are more efficient than traditional approaches in terms of logistics 

and cost. The benefit of influenza prediction lies in its ability to minimize morbidity and mortality by 

allowing relevant departments to implement appropriate preventative and control actions after evaluating 

forecasted data. This research develops a Runge Kutta optimized Dynamic Gated recurrent unit (RKO-

DGRU) public health with for influenza identification. Initially, the dataset is collected from kaggle and 

preprocessed utilizing the lemmatization method. Our approach can result in a sensitivity of 86.69%, 

specificity of 93.68%, and 97.5% accuracy. The findings highlight the possibility of applying DL 

approaches to efficiently identify and categorize influenza using data gleaned from conversations on open 

networks. It can thus provide efficient ways to stop and manage an Influenza epidemic. 

 

1. Introduction 

Many vaccination messages on social media express doubts about the safety of vaccines and fabricate 

patient stories, although the influenza vaccine is one of the greatest successes of public health and 

avoids millions of diseases and thousands of deaths annually [1]. To minimize the spread of the virus 

during influenza seasons, early and accurate influenza forecasting is essential. Conventional influenza 

monitoring often defines and classifies influenza outbreaks that have already occurred since it involves 

manual data collecting that takes weeks to complete [2]. Regular reports and dissemination of official 

information on the flu trend are made by government public health organizations, because of the 

considerable lag in time, these numbers sometimes fall short of providing insight into the most recent 

evolution of flu outbreaks [6]. Influenza continues to put pressure on the public healthcare system 

despite persistent attempts to increase vaccination coverage [11]. Influenza is an infectious disease that 

spreads through the respiratory system and can be fatal, especially in small children and the elderly [8]. 

It occurs annually in temperate climates as epidemics [4]. There are socioeconomic variations in 

influenza morbidity and death, according to several researches [3]. Research has demonstrated that 

influenza hospitalization rates are positively correlated with low levels of education and that the most 

destitute areas saw twice as many hospitalizations for influenza as the regions with the lowest rates of 

poverty [5]. A novel RKO-GAN method for influenza identification is developed in this study. The 

following sections make up the remaining portion of this report: The related work is under portion 2. 

The method is described in portion 3. In portion 4, the performance evaluations of the article are 

discussed; in portion 5, conclusions are provided. 

Related work 

The enhancement of influenza-like illness (ILI) monitoring paradigm, they developed the contactless 

syndromic surveillance technology known as FluSense Al Hossain et al. [12]. The study examined 

Duchemin et al. [7] the effectiveness and viability of detecting influenza epidemics utilizing a detection 

system powered by sick leave data [14]. The paper examined the usefulness of a machine-learned 

anonymized Venkatramanan et al. [13] mobility map compiled from hundreds of millions cell phones 

to predict epidemics. They discovered a time-precedence link between influenza epidemics and real-
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time online data uploads Jang et al. [9]. 

2. Methodology  

The suggested approach RKO-DGRU consists of several parts, such as data collection preprocessing, 

and classifier. The suggested approach used to identify influenza is shown in Figure 1 every 

component will be covered in detail in the next subsections. 

 

Figure 1. Proposed flow 

Dataset 

This dataset will examine vaccination as a critical public health intervention in the battle against 

infectious illnesses. Individuals become immune through vaccinations, and a community's level of 

immunity can further stop the spread of illness by creating herd immunity. The dataset gathering form 

(https://www.kaggle.com/datasets/arashnic/flu-data).  

Data preprocessing using lemmatization 

Several preprocessing processes are carried out to concentrate on the key user post concepts and 

improve the final feature vector's semantic quality. Remove punctuation, change the text's case to 

lowercase, and tokenize it before lemmatization. Ensuring precise base word extraction raises the 

standard of language analysis and comprehension. 

Classification using Runge Kutta optimized Dynamic Gated recurrent unit (RKO-DGRU) 

Runge-Kutta methods are used in numerical approaches to solve ordinary differential equations. 

Dynamic Gated Recurrent Units (DGRU) is DL techniques used for regression and classification 

problems. This indicates the RKO and DGRU were introduced with the suggested approach, which is 

an advanced and contemporary DL methodology. 

Runge Kutta Optimization (RKO) 

Three methods are used by the RKO to update the decision variables. It begins by using the RKO 

technique to determine the location 𝑦𝑚+1, which is provided in Equation (1). Next, to raise the caliber 

of the solutions and prevent local optima stagnation, it employs the enhanced solution method. Equation 

(2) is used to obtain the new position 𝑦𝑛𝑒𝑤2. The optimal solution is 𝑦𝑛𝑒𝑤2 if its fitness is greater than 

that of 𝑦𝑚+1. If not, the expression in Equation (3), which designates a new position called 𝑦𝑛𝑒𝑤3, will 

be computed. The optimal choice will be 𝑦𝑚+1 if the cost calculation for 𝑦𝑛𝑒𝑤3 is inferior to that 

of 𝑦𝑚+1.  

https://www.kaggle.com/datasets/arashnic/flu-data
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𝑦𝑚+1 =

{
 
 

 
 

(𝑦𝑣 + 𝑘 × 𝑠 × 𝑦𝑣)

+(𝑆𝐹 × 𝑆𝑀) + (𝜇 × 𝑦𝑔)𝑖𝑓𝑟𝑎𝑛𝑑 < 0.5

(𝑦𝑛 + 𝑘 × 𝑆𝐹 × 𝑠 × 𝑦𝑛)

+(𝑆𝐹 × 𝑆𝑀) + (𝜇 × 𝑦𝑔)𝑖𝑓𝑟𝑎𝑛𝑑 ≥ 0.5

                                                                              (1) 

𝑦𝑛𝑒𝑤2 =

{
 
 

 
 

𝑦𝑛𝑒𝑤1 + 𝑘 × 𝑢

× |(𝑦𝑛𝑒𝑤1 − 𝑦𝑎𝑣𝑔) + 𝑟𝑎𝑛𝑑𝑛|, 𝑖𝑓𝑢 < 1

(𝑦𝑛𝑒𝑤1 − 𝑦𝑎𝑣𝑔) + 𝑘 × 𝑢

× |(𝑤 × (𝑦𝑛𝑒𝑤1 − 𝑦𝑎𝑣𝑔) + 𝑟𝑎𝑛𝑑𝑛|, 𝑖𝑓𝑢 ≥ 1

∀𝑟𝑎𝑛𝑑 < 0.5                                              (2) 

𝑦𝑛𝑒𝑤3 = (𝑦𝑛𝑒𝑤2 − 𝑟𝑎𝑛𝑑 × 𝑦𝑛𝑒𝑤2) + 𝑆𝐹 (𝑟𝑎𝑛𝑑 × 𝑦𝑅𝐾 + (𝑐 × 𝑦𝑝 − 𝑦𝑛𝑒𝑤2)) 𝑖𝑓𝑟𝑎𝑛𝑑 < 𝑢             

(3) 

Where µ represents the random number, 𝑟𝑎𝑛𝑑𝑚 indicates the random number having a normal 

distribution. 𝑘 is a randomized value in the region. 𝑠 is a whole number with a value of 1, 0 or −1. This 

option modifies search direction and enhances diversity. The average of the three solutions at random 

is shown by the symbol 𝑦𝑎𝑣𝑔. In RKO, 𝑆𝑀 stands for the primary search mechanism. Because of its 

randomized adaptive nature, scale factor (SF) helps RKO enhance exploration and exploitation. 

Gated Recurrent Unit (GRU) 

The basic idea of GRU is to employ gating methods to update a network's hidden state only on a selected 

fraction of time steps. Gating systems are used to control information entering and exiting the 

organization. The GRU has two gating mechanisms, the reset gate and the update gate. The special 

emphasis of this study is time series prediction, for which the recurrent neural network (RNN) approach 

is a widely used DL technique. But RNNs can also have problems, such as disappearing and gradient 

explosion, especially as learning long-term relationships from the input. The Long short term memory 

(LSTM) can alleviate these issues by using a gating mechanism to enhance gradient flow inside a 

network. A GRU is an LSTM variant that has two gates instead of the LSTM's three gates. The GRU 

demonstrates an improved ability to identify and learn long-term relationships in time-series data 

combined with a decrease in computational costs and model complexity, which results in improved 

training efficiency. This improves the GRU’s suitability for managing time-series data’s long-term 

dependencies. Due to its reduced storage requirements, the GRU can process huge datasets as well. The 

major model in this study was decided to be the basic GRU model. Figure 2 shows the architecture of a 

GRU model. 

𝑞𝑠 = 𝜎(𝑋𝑞𝑤𝑠 + 𝑉𝑞𝑔𝑠−1 + 𝑎𝑞)                                                                                                

(4) 

𝑦𝑠 = 𝜎(𝑋𝑦𝑤𝑠 + 𝑉𝑦𝑔𝑠−1 + 𝑎𝑦 )                                                                                                              (5) 

𝑔̃𝑠 = tanh(𝑋𝑔𝑤𝑠 + 𝑉𝑔(𝑞𝑠 ∗ 𝑔𝑠−1) + 𝑎𝑔                                                                                                (6) 

𝑔𝑠 = 𝑦𝑠 ∗ 𝑔𝑠−1 + (1 − 𝑦𝑠) ∗ 𝑔̃𝑠                                                                      

(7) 
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Figure 2. GRU architectural block 

As shown in equations (4)-(7), the element-wise product formula is denoted by∗, The weight matrices 

of the 𝑞𝑠 gate and the 𝑦𝑠 gate are denoted by the symbols 𝑋𝑞 and 𝑋𝑦, respectively; the weight matrix 

for the output is represented by 𝑉𝑔. The input data is represented by 𝑤𝑠 at time 𝑠, the candidate state 

and output state by 𝑔̃𝑠 and 𝑔𝑠 at time 𝑠, respectively, by constants 𝑎𝑞, 𝑎𝑦 , and 𝑎𝑔, and by the sigmoid 

and tanh activation functions, 𝜎 and tanh, respectively, that are used to activate the control gates and 

candidate states. 

3. Results and discussion 

In this paper, Python 3.11 has been used for identifying influenza trends via social media. A laptop 

with 32 GB of RAM, an Intel (R) processor, and Windows 10 installed. The quality of the proposed 

RKO-GAN technique is thoroughly investigated through comparison and evaluation of the outcomes. 

The effectiveness and precision of a proposed method are contrasted with those of existing techniques 

such as Boosting trees (BT), Random Forest (RF), and Logistic regression (LR) [10]. The estimated 

accuracy, sensitivity, and specificity are shown in the result for the provided approach.  Accuracy 

indicates that across many fields, accuracy serves as a fundamental metric for correctness and 

precision. It illustrates how closely a measured value matches the real value in terms of data analysis. 

Figure 3 shows the accuracy of the proposed system. The recommended method achieves 95.36%, 

compared to 84.54% for BT, RF has gained 85.21%, and 81.12% for LR. This confirms that the RKO-

DGRU method we proposed is highly accurate. 

 
Figure 3. Comparison of the accuracy 

The sensitivity of the test is the proportion of disease-bearers that it correctly detects. Sensitivity is 

the proportion of public healthy persons correctly excluded from the sample by the test. Figure 4 

shows the comparative examination of sensitivity using existing methods. The sensitivity for BT has 

gained 75.64%, RF is offered at 75.59%, LR is at 66.97%, and the highest sensitivity is 86.69% for 

the suggested RKO-DGRU technique. 
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Figure 4. Comparison of the sensitivity 

Specificity is the percentage of public healthy individuals that the test successfully eliminates from 

the sample. These concepts are essential from a clinical perspective to confirm or exclude sickness 

during screening. Figure 5 shows the accuracy rates for the existing and proposed techniques. The 

recommended method achieves 93.68% when compared to existing methods, which obtain values of 

89.47% for BT, 90.91% for RF, and 89.50% for LR. Table 1 shows the results of the classification 

techniques in numbers. 

 
Figure 5. Comparison of the specificity 

Table 1. Numerical outcomes of the classification methods 

Methods Accuracy (%) Sensitivity (%) Specificity (%) 

BT 84.54 75.64 89.47 

RF 85.21 75.59 90.91 

LR 81.12 66.97 89.50 

RKO-DGRU 

[Proposed] 

95.36 86.69 93.68 

 

4. Conclusion and future scope 

This study proposed a Runge Kutta optimized Dynamic Gated recurrent unit (RKO-DGRU) for 

identifying influenza trends via social media. Through the GRU with the well-known Runge-Kutta 

method for differential equation-solving accuracy, this strategy improved the model's capacity to 

produce realistic synthetic data that mirrors conversations about influenza on social media. The RKO-

DGRU enhanced trend identification and prediction accuracy by effectively capturing intricate patterns 

in temporal data. The results showed a 95.36% accuracy rate, sensitivity (86.69%), and specificity 

(93.68%) in predicting influenza from the tweets. As for minor influenza complications, sinus and ear 

infections are widespread of pneumonia, which is a dangerous side effect that can arise from a bacterial 

co-infection or an isolated influenza virus infection. The goal of future research is to improve the RKO-

DGRU model by integrating more data sources and investigating real-time applications for improved 
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public health intervention and influenza trend monitoring. 
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