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ABSTRACT 
Background: Genetic studies reveal the complexity of human diseases, particularly polygenic disorders like 

periodontitis. Autoencoders are used to study single-nucleotide polymorphisms (SNPs) using deep learning 

to identify latent variables and model complex relationships. This helps identify biomarkers for early 

diagnosis, disease severity indicators, and therapeutic targets. However, challenges remain, such as large 

datasets and the interpretability of deep learning models. Developing approaches to enhance interpretability 

is crucial for translating genomic findings into clinically relevant insights, such as precision medicine and 

personalized treatment strategies. This study employs a Graph Autoencoder (GAE) to analyze SNP data, 

focusing on the relationships between SNPs and their associated genes in periodontitis. 

Methods: The GAE model was trained to learn embeddings that capture the underlying graph structure, 

enabling predictions and insights into the genetic network. The dataset containing single nucleotide 

polymorphisms (SNPs) and gene information for periodontitis was merged from two sources, using database 

management tools like SQL or pandas in Python. Node features were created by encoding categorical 

variables (SNP_ID and Associated_Gene) and scaling them using StandardScaler. Edges were constructed 

to represent bidirectional connections between SNPs and their associated genes. The Graph Autoencoder is 

a two-layer GCN encoder that captures graph structure and reconstructs the adjacency matrix, using binary 

cross-entropy loss for parameter updates, PyTorch Geometric for efficient data handling, and adjustable 

learning rate. 

Results: The model achieved a final reconstruction loss of 0.8047 after 100 epochs, indicating effective 

graph structure learning. Its high recall but low precision suggest over-prediction of connections. The learned 

embeddings reveal a clear clustering of SNPs, explaining 98.2% of the variance. 

Conclusion: While the Graph Autoencoder demonstrates high recall, it requires further optimization for 

precision. It provides valuable insights into SNP-gene associations and disease mechanisms requiring further 

study. 

1. Introduction 

Genetic studies reveal the complexity of human diseases, especially polygenic disorders like 

periodontitis. Traditional approaches rely on single-nucleotide polymorphisms and gene associations, 

but advanced computational approaches are needed to understand intricate gene interactions.(1).SNPs, 

the most common form of genetic variation, are being studied using deep learning, particularly 

autoencoders, to understand the genetic basis of complex traits like periodontitis. Autoencoders are 

artificial neural networks used for unsupervised learning to represent and reconstruct input data 

efficiently. They can identify latent variables in diseases like periodontitis, model complex 

relationships among SNPs and genes, and identify patterns that traditional statistical methods may 

overlook.(2). 

Periodontitis is a disease influenced by genetic, environmental, and microbial factors.(3). It is 

polygenic, involving multiple SNPs in genes that affect immune response, inflammation, and tissue 

remodeling. Understanding these SNPs and their corresponding genes can reveal pathways and 

biological mechanisms contributing to the disease's susceptibility and progression. SNP-gene mapping 

aids in identifying biomarkers for early diagnosis, disease severity indicators, and therapeutic targets. 

IL-6 and TNF gene variations, linked to increased risk of periodontitis and susceptibility to systemic 
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inflammation, are key biomarkers for early diagnosis and treatment(4). Traditional SNP-gene mapping 

methods, like genome-wide association studies (GWAS), often rely on statistical correlations 

challenged by genetic interactions. These studies may not fully understand biological mechanisms and 

may not fully utilize the data, especially when dealing with polygenic variations.(5). 

Previous studies investigated the prevalence of interleukin (IL)-1A, IL-1B, and vitamin D receptor 

(VDR) gene polymorphisms in the Turkish population and their association with Stage III Grade B/C 

periodontitis. Results show that IL-1A and VDR polymorphisms are not associated with periodontitis, 

but the C allele in IL-1B is more common in healthy individuals(2). VDR polymorphisms are 

associated with enhanced susceptibility to Stage III periodontitis in the Turkish population and may 

be used as an identification criterion for Grade B and Grade C periodontitis. One more study examined 

22 ANRIL gene variants, with four replicated in multiple studies. The most replicated polymorphism 

was rs1333048, associated with susceptibility to periodontitis in the whole population and grade C 

periodontitis. It also showed potential influence on a slowly progressive form of periodontitis, known 

as chronic periodontitis(6). 

Deep learning, a subset of machine learning, has revolutionized various fields, including computer 

vision, natural language processing, and genomics. Its ability to learn intricate patterns from vast 

datasets eliminates the need for manual feature extraction and pre-processing. The study uses random 

forest and cluster analysis to enhance genome-wide association studies (GWAS) to identify disease-

associated susceptibility loci. It identifies three potential susceptibility loci: SNP rs2399971, gene 

LINC00578, and locus 11p15, highlighting the effectiveness of this approach in disease risk 

assessment.(7). This is particularly useful in genetics, where the interdependent relationships among 

genetic variants make traditional analytical techniques less effective. Deep neural networks (DNNs) 

can learn representations of data at multiple levels, transforming raw input into useful prediction and 

classification forms. This is crucial for understanding complex diseases like periodontitis, where single 

nucleotide polymorphisms (SNPs) can interact in ways that traditional linear models cannot, and one 

more study showed that The study uses machine learning techniques to improve asthma prediction and 

diagnosis by analyzing single nucleotide polymorphisms. Random forest and recursive feature 

elimination are used for feature selection, with RF identifying significant SNPs. The RF-SVM 

combination achieves an accuracy of 62.5% and an AUC of 0.62(8). 

Autoencoders are powerful tools for genomic data analysis, consisting of an encoder and a 

decoder(9,10). They compress input data into a lower-dimensional representation, allowing them to 

discover meaningful latent variables that capture genetic information. Autoencoders are particularly 

useful in SNP-gene mapping because they reduce dimensionality while retaining significant 

information. Depending on the input data, they can also be adapted to incorporate additional layers 

and structures, such as convolutional layers or recurrent networks. However, challenges remain, such 

as the need for large and high-quality datasets, as deep learning models typically require substantial 

data(11,12). Future directions for autoencoders include incorporating annotated datasets with both 

SNP and gene expression data, which can be limited, posing barriers to effective model training. 

Moreover, the interpretability of deep learning models continues to be an active area of research. While 

autoencoders can provide insights into data structure, discerning the biological significance behind the 

learned representations poses challenges. Developing approaches that enhance the interpretability of 

deep learning models will be crucial for translating genomic findings into clinically relevant insights 

for periodontitis management. Deep learning, particularly autoencoders, is revolutionizing genomic 

research by revealing intricate relationships between single nucleotide polymorphisms (SNPs) and 

genes. This technology can uncover hidden patterns, leading to precision medicine and targeted 

interventions for periodontitis. The future of SNP-gene(13,14) mapping will enhance disease 

mechanisms and personalized treatment strategies. This study employs a Graph Autoencoder (GAE) 

to analyze SNP data, focusing on the relationships between SNPs and their associated genes in 

periodontitis. 
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2. Methods 

The GAE model was trained to learn embeddings that capture the underlying graph structure, enabling 

predictions and insights into the genetic network. The following sections detail the methods, 

hyperparameters, and analysis results. 

A. Data Preparation: 

The dataset containing SNP IDs, associated genes, and other genomic information was merged from 

two sources. 

-  Node features were created by encoding categorical variables (SNP_ID and Associated_Gene) and 

scaling them using StandardScaler. 

-  Edges were constructed to represent bidirectional connections between SNPs and their associated 

genes. 

Dataset Merging 

The study gathered data from two sources: a list of single nucleotide polymorphisms (SNPs) and gene 

information for periodontitis. They used common identifiers (SNP IDs) to link each SNP to its gene 

and genomic data. Database management tools like SQL or pandas in Python were used to merge 

disparate data attributes while maintaining data integrity. Post-merging data cleaning procedures were 

conducted to ensure the dataset was complete and accurate, addressing discrepancies like missing 

values or duplicate entries. The dataset was merged, and node features were created for the deep 

learning model. Primary features included SNP_IDs and Associated_Gene names. Categorical 

variables, such as SNP_IDs and Associated_Gene names, were encoded using one-hot encoding and 

label encoding for machine learning algorithms. 

The study uses one-hot encoding for SNP_IDs, converting each category into a separate binary feature, 

allowing better interactions without assuming intrinsic ordinal relationships. Label encoding is used 

for Associated_Gene attributes, assigning each gene a unique integer value based on its lexicographic 

order. The 'StandardScaler' from the'sklearn.preprocessing' module standardizes features by removing 

the mean and scaling to unit variance. This process involves mean calculation, standard deviation 

calculation, and scaling for each feature value. This ensures that encoded features contribute equally 

to distance calculations in underlying algorithms, enhancing model performance. The methodology 

involved creating bidirectional graph structures to explore relationships between SNPs and their 

associated genes. Each SNP was connected to its associated genes, indicating its influence on the gene's 

expression or function. Genes were connected to SNPs, reflecting multiple SNP associations due to 

their role in various biological pathways or diseases. Each edge was annotated with weights, indicating 

the strength or significance of the association. This allowed the model to prioritize more impactful 

SNP-gene interactions based on the significance level of SNP-gene associations reported in GWAS 

studies. 

The study used graph data structures to represent SNP and gene relationships, with nodes representing 

SNPs and edges representing directed associations. This allowed for graph-based algorithms and deep 

learning techniques, particularly Graph Neural Networks (GNNs). The methodology enables advanced 

analysis using deep learning frameworks, enhancing the representation of SNP-gene interactions and 

preparing data for modeling phases, where insights into risk factors for periodontitis can be uncovered. 

B. Model Architecture: 

Methods 

Graph Autoencoder Architecture 

i. Encoder 

The GAE encoder uses two Graph Convolutional layers (GCNConv) to learn node embeddings from 

the input graph. The first layer transforms the input features into a 64-dimensional hidden 
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representation, incorporating adjacency information. The second layer reduces the dimensionality to 

32, with a dropout layer optionally included for regularization. The final output, H_2, represents the 

learned node embeddings, with each node represented in a 32-dimensional continuous space. This 

helps prevent overfitting and improves the encoder's overall performance. 

ii. Decoder 

The decoder reconstructs the adjacency matrix from learned node embeddings using the inner product 

of the embeddings to approximate the original graph structure. This process creates a similarity score 

for each pair of nodes, with higher scores indicating stronger connections. A sigmoid activation 

function is applied to confine the scores between 0 and 1, as the reconstructed adjacency matrix is 

expected to have binary values. To optimize the GAE, a reconstruction loss function, typically binary 

cross-entropy loss, measures the difference between the true adjacency matrix and the reconstructed 

matrix. The optimization process aims to minimize this loss, improving the quality of node embeddings 

and the reconstructed adjacency matrix. 

The Graph Autoencoder is a two-layer GCN encoder that captures the graph's structure in learned 

embeddings, followed by a simple inner product decoder that reconstructs the adjacency matrix. The 

training process leverages binary cross-entropy loss to update model parameters effectively. The 

framework uses PyTorch Geometric to handle graph-structured data efficiently and supports 

extensions for improved performance in specific applications. The learning rate can be set through 

experimentation, and the performance of the GAE can be evaluated using appropriate metrics. 

 

Fig 1. Shows The Architecture of The Study 

C. Training: 

-  The model was trained for 100 epochs using the Adam optimizer with a learning rate 0.01. 

-  The reconstruction loss was calculated using the binary cross-entropy loss function. 

-  Training progress was monitored by tracking the loss at each epoch. 

Hyperparameters 

-  Learning Rate: 0.01 

-  Hidden Units: 64 (first layer), 32 (second layer) 
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-  Epochs: 100 

-  Optimizer: Adam 

-  Loss Function: Binary Cross-Entropy 

The Graph Autoencoder (GAE) was trained using a comprehensive approach that included 

initialization, training, and evaluation. The initial setup involved data preparation, hyperparameter 

selection, and training procedures. The hyperparameters were chosen based on their learning rate, 

hidden units, iterations over the dataset, and the loss function. The training procedure involved iterating 

through the dataset and adjusting model parameters based on the computed loss at each epoch. The 

process involved an epoch loop, forward pass, forward pass, and backward pass and optimization. The 

loss was computed using the binary cross-entropy loss function to evaluate the model's predictions and 

update the model's parameters. The reconstruction loss was tracked at the end of each epoch to assess 

the training progress and diagnose model performance. Loss tracking was done by storing the loss 

value for each epoch in a list for analysis after training completion. Periodic logging of the loss allowed 

real-time insights into the model's performance, aiding in troubleshooting and adjustments. Upon 

completing the training, the model was evaluated using a separate validation or test dataset, depending 

on the graph structure and research objectives. Evaluation metrics such as accuracy, F1 score, 

precision, and recall were computed based on task-specific applications like link prediction or node 

classification. 

3. Results 

 

Fig 2. shows t-SNE visualization of the reconstructed SNP data. 

The t-SNE visualization displays learned embeddings in 2D space, clustering similar SNPs. Colors 

represent different SNP IDs, demonstrating the model's ability to group related genetic variants. The 

model created 32-dimensional embeddings for each SNP, capturing the complex relationships between 

genetic variants and their associated genes. These embeddings can be utilized for similarity analysis 

between SNPs, clustering related genetic variants, and predicting potential gene-SNP associations. 
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Fig 3. shows the epoch loss training performance. 

A. Training Performance: 

-  The model achieved a final reconstruction loss of 0.8047 after 100 epochs. 

-  The loss curve demonstrated stable convergence, indicating effective graph structure learning. 

 

Fig 4. shows 

B. Reconstruction Metrics: 

-  Accuracy: 0.0015 

-  Precision: 0.0015 

-  Recall: 1.0 

-  The high recall but low precision suggests over-prediction of connections. 
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C. Embedding Analysis: 

 

Fig 3. shows the PCA embeddings of the variance of the SNP data. The learned embeddings were 

visualized using t-SNE and PCA, revealing a clear clustering of SNPs.The first two principal 

components explained 98.2% of the variance. 

D. Network Metrics: 

-  Average Clustering Coefficient: 0.019 

-  Modularity Score: 0.385 

-  These metrics indicate sparse local connectivity and moderate community structure. 

4. Discussion 

The Graph Autoencoder demonstrated its capability to learn meaningful representations of SNP-gene 

relationships, as evidenced by the clear clustering structure in the embedding space. The high 

explained variance ratio (98.2%) of the first two principal components suggests that the 32-

dimensional embeddings effectively capture the essential features of the genetic network in a lower-

dimensional space. The model's perfect recall (1.0) but low precision (0.0015) indicates a tendency to 

over-predict connections, suggesting potential areas for improvement in the model architecture or 

training process. This behavior might be addressed by adding regularization, adjusting the model 

capacity, or implementing a more sophisticated edge prediction mechanism(5,15). 

In this study, t-SNE visualization shows the model's 2D embeddings, capturing complex relationships 

between genetic variants and their associated genes. The model achieved a final reconstruction loss of 

0.8047 after 100 epochs, indicating effective graph structure learning. The model's reconstruction 

metrics showed high recall but low precision, suggesting over-prediction of connections. The model 

can be used for similarity analysis, clustering of related variants, and predicting potential gene-SNP 

associations. The learned embeddings were visualized using t-SNE and PCA, revealing clear clustering 

of SNPs, explaining 98.2% of the variance. Network metrics showed sparse local connectivity and 

moderate community structure, indicating future directions and limitations similar to this study's. 

Machine learning has identified nine single nucleotide polymorphisms (SNPs)(16) with excellent 

predictive performance for rheumatoid arthritis (RA) across three datasets. A polygenic risk score 

based on these SNPs showed strong associations with RA, and an RA ML-PRS calculator has been 

developed for clinical use, which is similar to this study. The study developed a deep learning model 

called Multi-scale Convolutional Neural Network (MSCNN) for predicting nsSNPs. It used different 

kernel sizes and three types of nominal structural features. The "residue environment" method was 

used to predict protein nsSNPs. The DeepnsSNPs predictor was tested on three datasets and achieved 

an average Matthews correlation coefficient of 0.507(8). 
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The study aims to refine the model by experimenting with hyperparameters and using advanced 

architectures like VGAE or GCNs to capture complex relationships among SNPs. It also plans to 

incorporate additional data from the genetic context, such as gene expression or epigenetic 

modifications, to enhance prediction accuracy. A multimodal graph will be built to provide a holistic 

view. The study will also evaluate the utility of the learned embeddings through biological validation 

and benchmarking in the genetic context. Advanced clustering methods will be developed to uncover 

finer details in SNP relationships. Finally, interactive visualization platforms will be created to deepen 

insights into genetic relationships. 

The graph neural network model for genetic variant analysis has several limitations, including potential 

overfitting, sparse data challenges, limited interpretability, reconstruction loss, and dimension 

reduction limitations. The model's high recall but low precision may lead to false positive predictions, 

requiring further techniques like regularization, dropout layers, or early stopping. The model's sparse 

connectivity within the graph limits its ability to learn robust representations of SNPs, potentially 

hindering generalization to unseen data. The reconstruction loss of 0.8047 indicates room for 

improvement in accurately capturing the underlying graph structure of SNP relationships. The model's 

robustness, applicability, and interpretability could be significantly improved by addressing these 

limitations and exploring future directions. The network metrics provide additional insights into the 

structure of the genetic relationships. The low average clustering coefficient (0.019) suggests limited 

local clustering, consistent with the sparse nature of genetic interaction networks. The moderate 

modularity score (0.385) indicates the presence of community structure, potentially reflecting 

functional modules or pathways in the genetic network. 

The Graph Autoencoder model(11,17) is refined to improve its precise capturing of complex 

relationships between SNPs and genes. It could incorporate additional biological data sources, such as 

gene expression datasets or clinical data from periodontitis patients, to enhance predictive accuracy. 

Regularization techniques, such as dropout or early stopping during training, can mitigate overfitting 

and improve precision without sacrificing recall. Advanced edge prediction mechanisms, such as 

attention or graph neural networks, could lead to more accurate predictions of SNP-gene interactions. 

Evaluation metrics, such as F1 score or AUC, can provide a more comprehensive understanding of 

model performance. Cross-validation and external validation are also needed to confirm the 

generalizability of findings related to SNPs in periodontitis(18,19). Longitudinal studies could reveal 

dynamic interactions that a static model might miss. However, the model faces limitations, including 

imbalanced data, interpretability of results, SNP selection bias, generalizability across populations, 

computational complexity, and model overfitting(20). Addressing these issues could lead to more 

accurate and biologically relevant insights into SNP-gene relationships in periodontitis (21-23). 

5. Conclusion 

The Graph Autoencoder effectively learned embeddings that capture the relationships between SNPs 

and their associated genes. While the model demonstrated high recall, further optimization is needed 

to improve precision. The embeddings and network metrics provide valuable insights into the genetic 

network, enabling future studies on SNP-gene associations and disease mechanisms. Future work 

should focus on improving the model's precision while maintaining its ability to capture meaningful 

genetic relationships. 
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