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ABSTRACT

Heart rate variability (HRV) serves as a critical non-invasive biomarker of autonomic
nervous system (ANS) activity, highlighting the continuous interaction between
sympathetic and parasympathetic pathways in modulating cardiovascular activity. This
review elucidates the physiological foundations of HRV, including mechanisms such as
respiratory sinus arrhythmia, baroreflex oscillations, and thermoregulatory adjustments.
Clinically, HRV demonstrates significant utility in predicting cardiovascular risks,
diabetic neuropathy progression, psychological stress, and systemic inflammation.
Measurement techniques, such as time-domain and frequency-domain analyses, are
discussed alongside their methodological challenges, including respiratory artifacts,
protocol inconsistencies, and confounding factors like medications. While HRV’s
prognostic value in conditions like myocardial infarction and heart failure is well-
established, debates persist over the interpretation of spectral components, such as the
controversial LF/HF ratio. Standardization of protocols and mechanistic clarity are
urgently needed to enhance HRV’s reliability. By bridging physiological insights with
clinical applications, this review underscores HRV’s potential as a versatile tool in
personalized medicine, while advocating for interdisciplinary research to address existing
limitations.

Background

Heart Rate Variability (HRV) refers to the variation in time intervals between consecutive
heartbeats. It reflects the dynamic interplay between the sympathetic and parasympathetic
divisions of the ANS in regulating cardiac function (1-4). The sympathetic nervous
system activates the heart via -adrenergic receptors during stress or physical demand, increasing
the heart rate and cardiac output and resulting in vasodilation. Conversely, the parasympathetic
system dominates at rest, slowing the heart rate through muscarinic receptor activation. Although
sympathetic activation enhances myocardial oxygen demand via increased heart rate and
contractility, this activity results in coronary vasodilation, which is primarily mediated by
metabolic byproducts rather than direct neural effects.
HRV arises from three physiological mechanisms:
1. Respiratory sinus arrhythmia (RSA): Cyclic heart rate fluctuations synchronized with
breathing, where inspiration transiently inhibits vagal tone, accelerating the heart rate (5,6).
2. Baroreflex oscillations: Blood pressure variability triggers compensatory heart rate
adjustments via the baroreceptor pathways (7,8).
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3. Thermoregulatory adjustments: Changes in the peripheral vascular resistance to regulate
body temperature alter the blood pressure and the heart rate(9,10).
Measurement of HRV
HRV is measured using electrocardiography (ECG) or photoplethysmography (PPG). ECG-
derived RR intervals (time between consecutive R-wave peaks) are the gold standard, while PPG
uses pulse wave timing from blood volume changes. These intervals, termed NN (normal-to-
normal) intervals, form the basis for HRV analysis (1-3). Clinically, HRV serves as a non-invasive
biomarker of autonomic balance, with reduced variability indicating ANS dysfunction or
heightened cardiovascular risk (3).
Measurement and Interpretation of HRV
HRV is assessed through two primary analytical approaches: time-domain and frequency-
domain methods, as standardized by the Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology (2). Time-domain analysis quantifies
beat-to-beat variability using statistical measures derived from NN (normal-to-normal) intervals
(4). Key parameters include:
e SDNN (standard deviation of NN intervals), which reflects overall HRV and correlates with
total autonomic activity.
e« RMSSD (root mean square of successive differences): Estimates parasympathetic (vagal)
modulation.
e pNNXx: (proportion of the number of pairs of successive NNs that differ by more than x ms out
of the total number of NNs). NNx is the number of pairs of successive NNs that differ by more

than x ms. NNXx is used to calculate pNNx using the following formula:

NNx
NNx = X100
PIVAX Total number of NNs

The common pNNx used in clinical practice are pNN10, pNN20, pNN30, pNN40, pNN50, pNN60
and pNN70. The unit used to express pNNx is %. The most commonly used pNNx is pNN50 which
estimates parasympathetic activity on the heart, same like RMSSD (11).
Frequency-domain analysis decomposes HRV into oscillatory components using spectral
techniques like fast Fourier transform (12). This method identifies distinct frequency bands:
o Total power (TP) (0-0.4 Hz), representing global autonomic activity.
e VLF (0.0033-0.04 Hz), linked to thermoregulation and hormonal influences but with
debated physiological origins.
e LF (0.04-0.15 Hz), primarily reflecting baroreflex-mediated oscillations rather than direct
sympathetic tone.
e HF (0.15-0.4 Hz), corresponding to respiratory sinus arrhythmia and parasympathetic
activity.
o LF/HF ratio, often misinterpreted as "sympathovagal balance," remains controversial due
to the dual autonomic influences on the LF band.
The recording protocols used significantly impact the results. Long-term assessments (24-hour
ECGQG) are ideal for time-domain analysis, because they capture circadian variations. Short-term
recordings (5-minute stationary ECG) suit frequency-domain methods (2,13). Standardization of
posture, environment, and respiratory rate (<9 breaths/minute) is critical to minimize artifacts(14).
Although both electrocardiography (ECG) and photoplethysmography (PPG) measure NN
intervals, ECG remains the gold standard for accuracy. Clinicians must account for confounding
factors like recording duration—SDNN values increase with longer measurements—and avoid
comparing studies with mismatched protocols (12,14). Despite its versatility, HRV interpretation
requires rigor to address methodological inconsistencies and physiological ambiguities. HRV is
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influenced by several factors, such as age, gender, and fitness(2). Higher variability is healthier
than lower variability . Athletes typically exhibit higher variability than non-athletes, and young
people generally have higher variability than older individuals(15).

Considerations and Controversies

The interpretation and application of HRV are subject to several methodological and physiological
controversies.

First: The physiological basis of the low-frequency (LF) band remains debated. While historically
linked to sympathetic activity, evidence suggests LF primarily reflects baroreflex-mediated
oscillations rather than direct sympathetic outflow, particularly under controlled respiratory
conditions (16). This challenges the traditional view of LF/HF ratio as a pure "sympathovagal
balance" indicator, complicating its clinical interpretation. Likewise, LF/HF ratio is highly
sensitive to environmental and postural changes, limiting their clinical utility in non-standardized
settings (17).

Second: The respiratory rate and depth significantly influence spectral analysis. Slow breathing
(e.g., <9 breaths/minute) shifts high-frequency (HF) power into the LF range, blurring distinctions
between parasympathetic and sympathetic contributions (16). This underscores the need for
standardized respiratory protocols during short-term HRV assessments, though such controls are
rarely implemented in clinical practice.

Third: Methodological inconsistencies hinder comparability. While 5-minute recordings are
recommended for short-term analysis, variations in recording duration, environmental conditions
(e.g., physical activity, emotional state), and signal-processing algorithms (e.g., Fourier transform
vs. wavelet analysis) can alter results (1-4). For instance, SDNN values increase with longer
recordings, complicating cross-study comparisons unless protocols are rigorously unified(18).
Fourth: Confounding factors such as medications (e.g., beta-blockers, antidepressants),
comorbidities (e.g., diabetes, anxiety disorders), and even caffeine intake modulate HRV, yet these
variables are often inadequately controlled in research and clinical settings (15,19). This limits the
reliability of HRV as a standalone diagnostic tool.

Finally: The clinical relevance of certain parameters remains unclear. For example, VLF
oscillations are theorized to reflect thermoregulation (17) or renin-angiotensin system activity (20),
but their prognostic value is primarily derived from population studies rather than mechanistic
insights. Similarly, while reduced HRV predicts adverse outcomes in conditions like heart failure,
its utility in guiding individualized therapies is unproven.

These controversies highlight the need for standardized methodologies (17), explicit reporting of
confounders, and cautious interpretation of HRV parameters within specific physiological and
clinical contexts. Future research should prioritize elucidating the mechanisms behind spectral
components and validating HRV’s role in personalized medicine.

Uses of HRYV in clinical practice and research

HRYV has demonstrated significant clinical utility in assessing autonomic function and predicting
outcomes across various cardiovascular and systemic conditions. Its applications are supported by
extensive research, as outlined below.

HRYV in Cardiovascular Diseases

HRYV is a well-validated predictor of arrhythmic events and mortality following acute myocardial
infarction (AMI)(21). Reduced HRV independently predicts sudden cardiac death and total
mortality, even when adjusted for left ventricular ejection fraction (LVEF) or ventricular ectopic
activity (22). Time-domain parameters, such SDNN <50 ms, are practical for risk stratification in
clinical settings, while spectral analysis highlights the prognostic significance of VLF components
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(13). Another report demonstrated that post-myocardial infarction (MI) patients with type 2
diabetes and SDNN values <70 ms faced a fourfold increase in 3-year mortality risk compared to
those with higher SDNN (23). Cardiac Syndrome X (CSX)—characterized by angina with normal
coronary arteries—reveals intermediate HRV profiles between healthy individuals and coronary
artery disease (CAD) patients. Approximately 60% of CSX patients exhibit autonomic
dysregulation, marked by elevated sympathetic activity or suppressed vagal tone, suggesting a
transitional pathophysiological state (24,25). Multivariate models combining HRV with LVEF and
ventricular ectopy enhance predictive accuracy, particularly for sudden death(21,26). Therapeutic
interventions, such as beta-blockers, modestly increase HRV and attenuate the morning surge in
sympathetic activity linked to higher mortality (27,28).

In congestive heart failure (CHF), depressed HRV correlates with left ventricular dysfunction,
hemodynamic compromise, and New York Heart Association (NYHA) functional class (29-32).
Sympathetic activation and vagal withdrawal, driven by neurohormonal dysregulation, contribute
to this reduction (29).

Patients with left ventricular hypertrophy (LVH) secondary to hypertension or aortic valve disease
exhibit reduced HRV, which inversely correlates with LV mass index (33,34).

Diabetic Neuropathy

The relationship between diabetic neuropathy and HRV has been extensively studied, with
consistent evidence highlighting measurable changes in HRV parameters that correlate with
disease progression, glycemic control, and clinical outcomes.

Early-stage cardiovascular autonomic neuropathy (CAN) manifests as reduced parasympathetic
activity, detectable through HRV analysis before overt clinical symptoms emerge. A study
involving 50 children with insulin-dependent diabetes demonstrated that RMSSD and HF power
were significantly reduced compared to healthy controls (35). Researchers observed that
asymptomatic diabetic patients exhibited marked declines in HRV indices within the first 5-10
years of disease progression, underscoring the insidious onset of autonomic impairment (35).
These findings align with reports that identified diminished parasympathetic activity as the earliest
indicator of CAN, detectable through short-term HRV recordings even in normoglycemic
individuals at risk of developing diabetes (36).

On the other hand, as diabetic neuropathy progresses, sympathetic dominance becomes evident,
exacerbating ANS imbalance. Chronic hyperglycemia and oxidative stress drive this shift,
reflected in elevated LF power and increased LF/HF ratios, which indicate heightened sympathetic
activity (37). According to one report, there is an inverse correlation between TP and HbA1c levels
in diabetic patients, which suggests that poor glycemic control leads to increased sympathetic
overactivation (60). This phenomenon is further supported by studies linking elevated cortisol
levels and inflammatory markers (e.g., tumor necrosis factor-alpha) to reduced HRV, highlighting
the interplay between metabolic dysregulation, neurohormonal stress, and autonomic dysfunction
(38,39).

The Atherosclerosis Risk in Communities (ARIC) study, involving 15,800 participants, found that
individuals with multiple metabolic disorders (e.g., hypertension, dyslipidemia, diabetes)
exhibited significantly lower SDNN values, correlating with heightened cardiovascular risk (40).
Psychological and Mental Health

HRV serves as a critical biomarker in evaluating psychological states, including chronic stress,
anxiety, and depression. Reduced HRYV, particularly SDNN and HF power, is strongly associated
with anxiety disorders and major depressive disorder (MDD)(41). For instance, individuals with
untreated MDD exhibit diminished parasympathetic activity, reflected in lower HF power and
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elevated LF/HF ratios, indicating sympathetic dominance (42). Chronic psychological stress
further exacerbates autonomic imbalance, with studies demonstrating that prolonged stress reduces
SDNN and RMSSD, markers of vagal tone(43). These findings underscore HRV’s utility in
identifying subclinical mental health disturbances and monitoring therapeutic interventions aimed
at restoring autonomic equilibrium.

Inflammation and Immunological Monitoring

Research indicates a consistent association between HRV and pro-inflammatory states in both
healthy individuals and clinical populations (44,45). Inflammatory conditions correlate with
diminished TP, affecting both parasympathetic and non-parasympathetic regulatory indices (44).
Patients with nosocomial infections or sepsis exhibit significantly lower HRV compared to controls
(45). While HRV’s predictive utility for infection risk remains limited, VLF power reduction
shows promise as a biomarker in adults across diverse clinical settings (44,45). Alternatively,
Chronic inflammatory conditions, such as sepsis or autoimmune disorders, exhibit pronounced
HRYV suppression, reflecting autonomic-immune crosstalk via the cholinergic anti-inflammatory
pathway (46-48). Monitoring HRV in critically ill patients aids in early detection of
immunological dysregulation, offering prognostic insights into sepsis outcomes and guiding
immunomodulatory therapies (44—49).

Environmental and Lifestyle Modulations

Environmental stressors, such as noise pollution and occupational hazards, significantly alter HRV
profiles. Exposure to chronic social stress or high-decibel environments correlates with reduced
SDNN and HF power, indicative of sympathetic overactivation (13,43,50). Conversely, lifestyle
modifications, including smoking cessation and moderate alcohol consumption, can ameliorate
HRV impairment. Heavy smoking diminishes cardiac vagal regulation(51), while moderate
alcohol intake transiently enhances HRV metrics in non-dependent users (52). Heavy smokers
exhibited increased LF power and LF/HF ratio, along with reduced SDNN, SDANN, RMSSD, and
HF power (53).Physical activity also modulates HRV; strenuous exercise initially lowers HRV due
to sympathetic surge, whereas regular moderate exercise improves parasympathetic tone (54,55).
These insights highlight HRV’s role in guiding personalized lifestyle interventions to mitigate
autonomic dysfunction.

Other HRV’s Applications

HRV’s utility extends beyond the aforementioned contexts, offering insights into diverse systemic
disorders. In neuromuscular diseases such as muscular dystrophy, diminished HRV serves as an
independent prognostic marker for mortality (56). Similarly, patients with controlled bronchial
asthma exhibit higher TP and HF but lower LF and LF/HF ratio compared with uncontrolled
asthma patients, indicative of enhanced parasympathetic modulations and higher HRV in the
second group (57). Epilepsy research reveals preictal HRV alterations, which precede seizures and
may aid in predicting episodic autonomic dysregulation (58,59). Likewise, short-term
measurement of RMSSD is a reliable parameter to assess parasympathetically impaired cardiac
modulation in Parkinson’s patients (60) and multiple sclerosis (61).

Researchers have used HRV as a measure of cardiac autonomic function in individuals with
various medical conditions. These include gastrointestinal disorders like peptic ulcer (62), irritable
bowel syndrome (63). They also included metabolic and endocrine conditions such as polycystic
ovary syndrome (64), thyrotoxicosis (65), Cushing syndrome (66), acromegaly (67), as well as
renal and hepatic issues like uremia (68), hemodialysis (69), and hepatic encephalopathy (70).
Studies have also explored HRV in pregnancy-related contexts, including preeclampsia (71),
during labour (72), alongside urogenital conditions like erectile dysfunction (73), benign prostatic
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hyperplasia (74). HRV studies have also explored HRV analysis in diverse conditions, including
pharmacological treatments (75,76) and complementary therapeutic approaches (77,78). All this
underscores  HRV’s utility in evaluating ANS changes in various clinical contexts. and
emphasizes its adaptability in both clinical and therapeutic settings, spanning disease management,
drug interventions, and integrative health strategies.

Limitations

The interpretation and application of HRV face several challenges. A primary issue lies in the
debated physiological basis of certain frequency bands, such as the LF component, which has
historically been attributed to sympathetic activity but may instead reflect baroreflex-mediated
adjustments (16). This ambiguity complicates the clinical translation of metrics like the LF/HF
ratio. Additionally, respiratory patterns significantly distort spectral analysis, as uncontrolled
breathing rates can blur distinctions between parasympathetic and sympathetic contributions (14).
Methodological inconsistencies further hinder progress, including variability in recording
durations, environmental conditions, and signal-processing techniques, which limit cross-study
comparisons (1-4). External influences, such as medications (e.g., beta-blockers, antidepressants
(15,19,27,28), comorbidities (e.g., diabetes, anxiety disorders) (35,40), and lifestyle factors (e.g.,
caffeine intake) (51-53), also modulate HRV but are rarely accounted for in studies. Lastly, while
reduced HRV predicts adverse outcomes in conditions like heart failure (29-32), its mechanistic
role in guiding therapies remains unproven, and the clinical relevance of very-low-frequency
(VLF) oscillations lacks robust validation (79,80).

Recommendations and Future Directions

To address these challenges, future research should prioritize standardized protocols for HRV
measurement, including fixed recording durations, controlled respiratory rates, and consistent
postural conditions, to minimize artifacts and enhance reproducibility (14,17). Mechanistic studies
are urgently needed to clarify the origins of debated spectral components, such as VLF and LF
bands, through controlled experiments and longitudinal designs (79,80). Clinically, exploring
HRV’s potential in personalized medicine, such as tailoring therapies for heart failure or diabetes,
could bridge the gap between risk prediction and actionable interventions. Technological
advancements, including validating wearable devices and improving photoplethysmography
(PPQG) accuracy against gold-standard ECG (1-4), may expand HRV’s accessibility without
compromising reliability. Integrating artificial intelligence could further refine HRV analysis by
accounting for confounders and decoding complex autonomic patterns. Finally, interdisciplinary
collaboration is essential to unravel HRV’s interactions with neuroendocrine, immune, and
metabolic systems, fostering a holistic understanding of autonomic dysregulation across diseases.
Conclusions

HRV provides a unique, non-invasive window into autonomic regulation, offering valuable
insights across cardiovascular, metabolic, and psychological disorders. Its physiological basis —
rooted in the interplay of respiratory, baroreflex, and thermoregulatory mechanisms— supports its
role as a predictor of adverse outcomes in conditions such as heart failure, diabetes, and depression.
However, challenges persist, including ambiguities in interpreting frequency-domain metrics (e.g.,
LF/HF ratio) and methodological inconsistencies in recording protocols. Confounding factors like
medications, comorbidities, and environmental stressors further complicate its clinical application.
To realize HRV’s full potential, future efforts must prioritize standardized measurement guidelines,
mechanistic studies to clarify spectral component origins, and integration with emerging
technologies like wearable devices and artificial intelligence. By addressing these gaps, HRV can
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evolve from a research tool into a cornerstone of clinical practice, enabling tailored interventions

and improving patient outcomes in diverse healthcare settings.
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