Vaginal Microflora In Vaginal Swab In Prelabour Rupture Of Membrane

Dr Mansi Chaudhary^{1*}

^{1*}Assistant Professor, Department of Obs & gyne Santosh Medical College & Hospital Ghaziabad (UP)

*Corresponding author: Dr Mansi Chaudhary

*Assistant Professor Department of Obs & gyne Santosh Medical College & Hospital Ghaziabad (UP)

KEYWORDS

escherichia coli, premature rupture of membrane, preterm birth

ABSTRACT

Introduction: Premature rupture of membrane (PROM) refers to the disruption of the fetal membrane before the beginning of labor, resulting in spontaneous leakage of amniotic fluid. Cervicovaginal infection is an important risk factor of PROM and can lead to complications to mother and the child. This study aimed to delineate the bacterial patterns found in PROM so that the ideal appropriate responsive antibiotics can be chosen.

Methods: A descriptive cross-sectional was done during the period of 6 months from December of 2023 to May 2024, to characterize the microorganisms in the vaginal fluid found in antenatal women presenting with premature rupture of membraneafter obtaining ethical approval. A total of 117 antenatal women diagnosed with premature rupture of membrane were included in the study. High vaginal swabs were collected for microbial culture and sensitivity. Data were entered using Microsoft Excel 2000 (v9.0) and Statistical Package for the Social Sciences (SPSS) software version 26.0 was used for analysis.

Results: Out of 117 samples, culture growth was present in the culture of high vaginal swabs of 23 (19.66%) women. The high vaginal swab cultures from the samples collected in women presenting with PROM reported 9 different types of pathogens *E. coli* in 12 (52.17%), *Klebsiella* in 4 (17.39%) and *Pseudomonas* in 2 (8.70%) cultures.

Conclusions: This study reveals diverse microorganisms in premature rupture of membrane cases, with E. coli being the most common. Identifying these bacterial patterns is essential for selecting effective antibiotics, improving maternal and neonatal outcomes, and reducing morbidity and mortality by early detection and treatment of vaginal infections..

INTRODUCTION

Premature rupture of membrane (PROM) refers to the disruption of fetal membrane before the beginning of labor, resulting in spontaneous leakage of amniotic fluid. Preterm premature membrane rupture occurs in about 1% of all pregnancies and accounts for 30-40% of preterm births. The cause of PROM is multifaceted, with cervicovaginal infections being the most significant. The other specific risk factors for PROM were BMI <18.5 kg/m², history of PROM, nulliparity, and low level of education.

Studies show that women with both intrauterine infection and preterm PROM are more likely to experience abruption compared to those without these complications and there is improvement in neonatal and maternal outcomes when antibiotics are used in PROM.^{5.6} Thus, understanding the bacterial patterns specific to PROM can guide the selection of appropriate antibiotics, thereby potentially improving maternal and neonatal outcomes.

This study aims to find the bacterial patterns found in PROM so that the ideal appropriate responsive antibiotics can be chosen.

MATERIALAND METHODS

It is a descriptive cross-sectional study that was done at a tertiary care center in the Department of Obstetrics and Gynecology, Santosh Medical College. All Pregnant women with a diagnosis of PROM established after proper history and examination after 28 weeks of gestation presenting to the OPD or labor room were enrolled for the study. The data was collected from December of 2023 to May 2024. Exclusion criteria were antenatal women presenting with gestational age less than 28 weeks, patients with feature of chorioamnionitis like fever, tachycardia, uterine tenderness or foul smelling liquor, fetal distress and meconium stained amniotic fluid on admission, patients having active labor on admission, patients presenting with antepartum hemorrhage. Total sampling method was used and all the cases of PROM during the study period of six months were taken which were 117 in number.

Informed permission was obtained from the patients before the data collection. When the patient arrived at the hospital, a comprehensive history, physical examination, and obstetrical examination were performed. By

doing a sterile speculum examination, observing a pool of amniotic fluid in the posterior fornix of the vagina, and noting the fluid exiting the body through the cervical os with or without the Valsalva maneuver, the diagnosis of PROM was established. Using the sterile swab sticks that are sold commercially, high vaginal swabs were obtained while adhering to all aseptic procedures during perspeculum examination. The swabs were sent for cultures in the lab. After the culture report was obtained data were entered using Microsoft Excel 2000 (v9.0) and Statistical Package for the Social Sciences (SPSS) software version 26.0 was used for analysis.

Results

A total of 117 pregnant women with PROM were included in this study. Culture growth was present in the culture of high vaginal swabs of 23 (19.66%) women and was absent in the remaining 94 (80.34%) women. The high vaginal swab cultures from the samples collected in women presenting with PROM reported 9 different types of pathogens. The organisms detected were E. coli in 12 (52.17%), Klebsiella in 4 (17.39%) and Pseudomonas in 2 (8.70%) cultures. The age groups of participants in this study is between 18-40 years with the mean age being 28.66±4.76 years. The women with PROM in the age range of 20-34 years were 101 (86.32%).

Among 117 women, 66 (56.41%) were primigravida, 64 (54.70%) women had normal vaginal delivery. The percentage of PROM cases were seen after 37 weeks of gestation was 72 (61.54%) and 45 (38.46%) cases occurred before 37 weeks of gestation.

In our study, for primipara, the presence of culturegrowth is found in 13 (19.69%), of cases of PROM and for multipara, it is 10 (19.60%).

Culture growth is present in 17 (37.77%) of total preterm pregnancies and 6 (8.33%) of total term pregnancies. Out of 45 preterm pregnancies, 28 (62.22%) did not show culture growth.

Discussion

In this descriptive cross sectional study we performed culture of high vaginal swab in women with PROM. Escherichia coli was the most common isolated organism followed by Klebsiella and Pseudomonas. In a study conducted by Rani et al. (2014), E. coli was the most common organism associated with PROM similar to our study. This might have been due to similar sociocultural environment in Nepal and India. A study done by McDonald et al. demonstrated a significant association between E. coli, Klebsiella spp. and PROM. A study done in India by Ambalpady et al. in 2022 reported culture growth in 85.09% of samples and no growth in remaining 14.91% samples. This is inconsistent with our study where culture growth is present in 22 (19.66%) of the samples. This might be due to the fact that our study site is located in the urban area where more patients are educated and maintain regular vaginal hygiene and have routine antenatal checkup.

According to Surekha S. Mohan et al (2017), in a study of 358 pregnant women with PROM in India, 61.1% of the patients were multigravida whereas 38.9% were primigravida. This is inconsistent with our study where the percentage of primigravida is more than multigravida female. The reason behind this inconsistency may have been because it was conducted in a different geographical area, healthcare setting, or with different population characteristics. In a study done in Uganda of 87 pregnant women with PROM, 84% of the women belonged to the age group of 20-34.99 years. This is comparable with our study where 101 (86.32%) women belong to the age group of 20-35 years. The similarity in the age distribution between suggests that the age range of 20-35 years is a common demographic for women experiencing PROM. This could be due to the fact that this age range encompasses the majority of childbearing years. In our study, the percentages of culture growth presence and absence are quite similar between primipara and multipara. For primipara, the presence of culture growth is 13 (19.69%), and for multipara, it is 10 (19.60%). As both groups have nearly identical percentages of culture growth presence and absence, parity does not seem to have significantly influenced the presence or absence of culture growth in this sample.

According to a study done by Telayneh et al., 32.7% of PROM patients had a gestational age of less than 37 weeks, while 67.3% of cases had a gestational age of more than 37 weeks. This is similar to our study where 72 (61.54%). PROM cases were seen after 37 weeks of gestation and 45 (38.46%) cases occurred before 37 weeks of gestation. Here, the percentages from both studies are reasonably close, indicating a consistent pattern across different populations. If PROM develops in the early stages of pregnancy, the woman and the unborn child are at great risk. If an infection is found to be the cause, managing the condition becomes more challenging. Our study found a notable difference in the of culture growth pattern between term and preterm pregnancies.

Culture growth is significantly more prevalent in preterm pregnancies 17 (37.77%) compared to term pregnancies 6 (8.33%). The majority of term pregnancies did not show culture growth 66 (91.67%), whereas a lower percentage of preterm pregnancies did not show culture growth 28 (62.22%). It is estimated that 15-25% of women with preterm PROM get postpartum infection, and 15-35% of cases involve clinically apparent intraamniotic infection. At early gestational ages, the incidence of infection is greater. Reducing the negative consequences of PPROM requires early identification, admission, and initiation of antibiotic treatment. Studies suggest that antibiotics can lengthen pregnancy and reduce morbidity in the mother and newborn when given to women who are not in labor and there is more evidence of a benefit at early gestational ages (less than 32 weeks). At these stages, the fetus is particularly vulnerable to complications related to prematurity. Prolonging pregnancy even by a few days can lead to significant improvements in neonatal outcomes. Therefore, timely diagnosis and treatment is very important.

There are certain limitations in our study. Being a single-center based study, the study results cannot be generalized to a broader population. The study included a relatively small sample size of 117 pregnant women, which may not be sufficient to capture the full spectrum of bacterial patterns associated with PROM. Factors such as nutritional status, access to healthcare, and other socio-economic determinants were not assessed, which could have an impact on the prevalence and types of bacterial infections observed in the study.

Conclusion

This study highlights the varied diversity of microorganisms in cases of premature rupture of membranes (PROM), with E. coli being the most commonly isolated pathogen. The majority of PROM cases occurred in women aged 20-34 years, with a nearly equal distribution between primigravida and multigravida women. Notably, culture growth was more prevalent in preterm pregnancies compared to term pregnancies. Identifying the bacterial patterns associated with PROM is crucial for selecting appropriate antibiotic treatments, which can improve maternal and neonatal outcomes. Patients with risk need to be detected early and correct treatment of vaginal infection can reduce the chances of morbidity and mortality.

References:

- 1. Atrolia S, Ekka SC, Tirkey S, Vivek V. Aetiological Factors and Foetomaternal Outcome in PROM. Journal of Evolution of Medical and Dental Sciences. 2020 Jan 13;09(02):91–6. doi: 10.14260/jemds/2020/20. [DOI] [Google Scholar]
- 2. Parry Samuel, Strauss Jerome F. Premature Rupture of the Fetal Membranes. N Engl J Med. 338(10):663–70. doi: 10.1056/NEJM199803053381006. [DOI] [PubMed] [Google Scholar]
- 3.Malla R, Metgud S, Metgud SC. Bacteriological profile of Premature rupture of membranes (PROM) in preterm pregnant women: A cross sectional study in Dr. Prabhakar Kore Charitable Hospital, Belagavi, India. Int J Clin Obstet Gynaecol. 2020 Nov 1;4(6):147–50. doi: 10.33545/gynae.2020.v4.i6c.746. [DOI] [Google Scholar]
- 4.Bouvier D, Forest JC, Blanchon L, Bujold E, Pereira B, Bernard N, et al. Risk Factors and Outcomes of Preterm Premature Rupture of Membranes in a Cohort of 6968 Pregnant Women Prospectively Recruited. J Clin Med Res [Internet]. 2019 Nov 15;8(11) doi: 10.3390/jcm8111987. doi: 10.3390/jcm8111987. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Ananth CV, Oyelese Y, Srinivas N, Yeo L, Vintzileos AM. Preterm premature rupture of membranes, intrauterine infection, and oligohydramnios: risk factors for placental abruption. Obstet Gynecol. 2004 Jul;104(1):71–7. doi: 10.1097/01.AOG.0000128172.71408.a0. [DOI] [PubMed] [Google Scholar]
- 6.Mercer B. Antibiotics in the management of PROM and preterm labor. Obstet Gynecol Clin North Am. 2012 Mar;39(1):65–76. doi: 10.1016/j.ogc.2011.12.007. [DOI] [PubMed] [Google Scholar]
- 7.Rani S, Mehra R, Gupta V, Huria A, Chander J. Vaginal flora in preterm premature rupture of membranes and their sensitivity to commonly used antibiotics. Asian J Med Sci. 2014 May 16;5(4):58–60. doi: 10.3126/ajms.v5i4.9889. [DOI] [Google Scholar]
- 8.McDonald HM, O'Loughlin JA, Jolley P, Vigneswaran R, McDonald PJ. Vaginal infection and preterm labour. Br J Obstet Gynaecol. 1991 May;98(5):427–35. doi: 10.1111/j.1471-0528.1991.tb10335.x. [DOI] [PubMed] [Google Scholar]
- 9. Ambalpady PA, Samantroy S, Mishra A, Panda J, Pattnaik D, Jena P. Microbiome Diversity in Vaginal Fluid and Sensitivity Patterns in Preterm Premature Rupture of Membrane Cases. Cureus. 2022 Jan;14(1):e20999. doi: 10.7759/cureus.20999. [DOI] [PMC free article] [PubMed] [Google Scholar]

- 10.Mohan SS, Thippeveeranna C, Singh NN, Singh LR. Analysis of risk factors, maternal and fetal outcome of spontaneous preterm premature rupture of membranes: a cross sectional study. Int J Reprod Contracept Obstet Gynecol. 2017 Aug 28;6(9):3781–7. doi: 10.18203/2320-1770.ijrcog20173623. [DOI] [Google Scholar]
- 11. Nakubulwa S, Kaye DK, Bwanga F, Tumwesigye NM, Mirembe FM. Genital infections and risk of premature rupture of membranes in Mulago Hospital, Uganda: a case control study. BMC Res Notes. 2015 Oct 16;8:573. doi: 10.1186/s13104-015-1545-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Telayneh AT, Ketema DB, Mengist B, Yismaw L, Bazezew Y, Birhanu MY, et al. Pre-labor rupture of membranes and associated factors among pregnant women admitted to the maternity ward, Northwest Ethiopia. PLOS Glob Public Health. 2023 Mar 8;3(3):e0001702. doi: 10.1371/journal.pgph.0001702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Prelabor Rupture of Membranes [Internet]. [Jun 18; 2024]. https://www.acog.org/clinical/clinical-guidance/practice-bulletin/articles/2020/03/prelabor-rupture-of-membranes Available from: [Google Scholar]
- 14.Dayal S, Hong PL. Premature Rupture of Membranes. StatPearls Publishing; 2023. [PubMed] [Google Scholar]
- 15. Yudin MH, van Schalkwyk J, Van Eyk N, INFECTIOUS DISEASES COMMITTEE, MATERNAL FETAL MEDICINE COMMITTEE. Antibiotic therapy in preterm premature rupture of the membranes. J Obstet Gynaecol Can. 2009 Sep;31(9):863–7. doi: 10.1016/S1701-2163(16)34305-5. [DOI] [PubMed] [Google Scholar]