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ABSTRACT 
Early diagnosis is essential for effective treatment of Parkinson’s disease (PD), a progressive neurological 

disorder that affects movement and cognitive functions. This study presents a multi-modal analysis for PD 

classification using deep learning algorithms applied to clinical, audio, and handwriting image data. 

Recurrent neural networks (RNNs), including Long Short-Term Memory (LSTM), Gated Recurrent Unit 

(GRU), and Bidirectional LSTM, are employed for clinical and audio data analysis, while convolutional 

neural networks (CNNs) are utilized for handwriting image classification. The results demonstrate varying 

model performance across different data modalities. Among the clinical data models, GRU achieved the 

highest accuracy of 82.42%, indicating its effectiveness in capturing sequential dependencies in medical 

records. For audio-based classification, RNN outperformed all other models with 94.87% accuracy, while 

LSTM and GRU showed comparable performance, each reaching 92.31% accuracy. In the image modality, 

CNN without Batch Normalization attained 82.93% accuracy, whereas Batch Normalization improved 

performance to 85.37%, highlighting its role in stabilizing training and enhancing feature extraction. These 

findings emphasize the importance of modality-specific deep learning models and their potential to enhance 

early and accurate PD detection. The study emphasise the significance of multi-modal approaches in medical 

diagnostics, paving the way for improved, non-invasive, AI-driven assessments. 

1. Introduction: 

Parkinson's disease (PD) is a complex neurological disorder affecting millions globally, significantly 

impairing motor and cognitive functions. Early detection and accurate diagnosis are essential for 

effective management; as timely intervention can enhance the quality of life for affected individuals. 

Traditional diagnostic methods rely on clinical assessments and biomarkers, often missing subtle early 

signs and delaying treatment. PD is a slowly progressing neurodegenerative brain disease (Senturk, 

2020) [1]. The word "neurodegenerative" describes a disease that causes brain cells to die. The lower 

brain stem, olfactory tracts, and enteric nervous system are where Parkinson's disease (PD) first 

manifests (Ko et al., 2021)[2]. PD affects both the brain's outer layer and the substantia nigra, moving 

from the regions of the initial symptoms to the brain's upper regions. The area of the brain responsible 

for motor control and cognitive function is affected by damage to the upper regions of the brain. It is 

thought that the sickness begins several years prior to the onset of motor symptoms, such as 

constipation, tremor, slowness of movement, loss or diminution of smell.  Moreover, vocal issues 

affect 90% of those with Parkinson's disease (Sakar &Kursun, 2010) [3]. With time, the illness's 

symptoms worsen, and people who are in more advanced stages may develop dementia and 

hallucinations (Arora et al., 2021) [4]. Consequently, in an effort to slow the progression of the illness, 

scientists are currently looking for ways to recognize these non-motor signs as soon as feasible. 

Machine Learning (ML) is being utilized more and more to identify medical disorders due to its high 

accuracy and ease of implementation (Abuhmed et al., 2021; Rashidy et al., 2021) [5][6]. In instance, 

PD has been treated with ML. Wan et al., (2019), for instance, focuses on studies carried out after PD 

diagnosis [7]. The authors performed surgeries on PD patients. In that study, the actual region to be 

operated on during PD brain surgery was identified using an ML-based method. Recent advancements 

in ML and artificial intelligence (AI) have introduced innovative diagnostic techniques that utilize 

multiple data. In this research, multi-modal data of PD is considered for the analysis, including voice 
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recordings, handwriting samples, and clinical evaluations. This approach provides a comprehensive 

understanding of PD by integrating insights from various data types. Deep learning architectures, such 

as recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and convolutional 

neural networks (CNNs), have shown exceptional effectiveness in recognizing patterns in complex 

datasets. This research aims to develop a robust classification model that accurately differentiates 

between individuals with Parkinson's disease and healthy individuals, ultimately facilitating timely 

interventions that can significantly improve patient outcomes. 

2. Literature Survey 

Smith et al. (2023) investigated the use of voice recordings, handwriting samples, and clinical data in 

a multimodal deep learning strategy for PD identification [8]. Their neural network model achieved an 

impressive accuracy of 92.4%, effectively differentiating between Parkinson's patients and healthy 

individuals. This study highlights the importance of utilizing multimodal information to capture the 

complex symptoms of PD, such as motor dysfunction and cognitive decline, by integrating temporal 

data from voice recordings with spatial data from handwriting samples. Similarly, Kwon and Kim 

(2023) explored tracking the progression of Parkinson's disease using clinical data and wearable 

sensors [9]. Their deep learning model, which combined sensor data (gait and movement patterns) 

with clinical assessments, attained a classification accuracy of 90.1%. This research underscores the 

potential of continuous, real-time monitoring through wearable sensors to enhance our understanding 

of PD progression, offering a dynamic view of disease evolution over time. 

Patel and Malhotra (2023) furthered this exploration by integrating voice recordings and gait analysis 

for PD diagnosis [10]. Their approach, which achieved an accuracy of 89.5%, combined vocal 

characteristics from speech with motor data from gait. By merging motor and non-motor data, this 

study provided a more comprehensive assessment of the impact of PD on both speech and movement. 

In a different vein, Ranjan and Gupta (2022) developed a machine learning model for early PD 

diagnosis by merging clinical data with neuroimaging data, such as MRI and PET scans [11]. Utilizing 

a 3D CNN, they reported an accuracy of 88.7%. This work emphasizes the role of structural and 

functional imaging biomarkers in early detection, especially for identifying neurodegeneration patterns 

associated with PD. 

Kumar and Ray (2022) proposed a multimodal learning framework that combined voice data, 

handwriting images, and clinical information, resulting in a high detection accuracy of 95% [12]. The 

study demonstrated how each data modality provided complementary insights: handwriting captured 

fine motor control, voice data represented speech motor symptoms, and clinical records offered 

contextual information about the patient’s overall health. This fusion of modalities significantly 

improved the model's diagnostic capabilities. Xu and Chen (2022) examined the potential of merging 

voice recordings with electroencephalography (EEG) to diagnose PD [13] Their hybrid CNN-RNN 

model achieved an accuracy of 87.9%, capturing both the motor symptoms affecting speech and the 

cognitive aspects of the disease. This innovative approach suggests that integrating voice data with 

brain activity can provide a more nuanced understanding of PD symptoms. 

Zhou and Li (2021) also focused on hybrid models, proposing one that combines voice recordings with 

handwriting data, achieving a detection accuracy of 94% [14]. This model effectively illustrates how 

PD affects various aspects of movement, such as hand coordination and voice articulation, 

demonstrating that combining multiple motor dysfunctions can enhance diagnostic performance. 

Lastly, Wang and Zhang (2021) developed a multimodal fusion model for PD diagnosis by integrating 

data from structural MRI, functional MRI (fMRI), and diffusion tensor imaging (DTI) [15]. Their 

study reported an accuracy of 93.2%, with each imaging modality contributing unique insights into 

brain structure and connectivity affected by PD. 
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3. Materials and Methods 

3.1. Dataset Description 

The datasets utilized in this study were sourced from Kaggle, a prominent platform for data science 

and machine learning resources. The primary datasets included: 

Voice Recordings Dataset: This dataset comprises 195 audio samples of individuals diagnosed with 

Parkinson's disease and healthy controls. The 24 attributes of the dataset are the features extracted 

from these recordings that are the various acoustic parameters essential for analyzing vocal 

characteristics related to the disease. 

Handwriting Samples Dataset: This dataset contains images of handwriting samples from both 

Parkinson's patients and healthy individuals with atotal of 204 images categorized into four groups: 

wave_healthy, wave_parkinson, spiral_healthy, and spiral_parkinson with 51 samples each. Key 

features from these images help assess fine motor control, which is significantly impacted by 

Parkinson's disease. 

Clinical Data: This dataset includes 2105 samples with 35 attributes related to the demographic 

information, and health-related metrics of participants helping in a comprehensive array of clinical 

assessments. It provides context and background for understanding the overall health status of 

individuals in the study. 

3.2. Proposed Methodology 

Figure 1 shows the proposed model framework of this research work. This research focus on applying 

deep learning techniques to multi-modal data of PD, which involves combining and processing 

different types of data, such as images, audio, and clinical information. Multi-modal data poses unique 

challenges due to the varied structures and formats of the datasets involved, requiring sophisticated 

fusion methods to effectively integrate these diverse sources. Initial step of the work is to collect the 

multiple datasets best representing the Parkinson disease. Different modes such as audio signals data 

of the Parkinson affected people, handwriting samples of the Parkinson patients are collected as images 

and also real time clinical dataset of PD are collected from different sources. 

3.3. Data Pre-processing 

Dataset preprocessing is the foundation of machine learning pipelines, directly impacting model 

performance and interpretability. An extensive cleaning procedure is required since raw data 

frequently contains noise, missing numbers, and errors. Dataset cleaning involves detecting and 

correcting errors, handling missing values, and removing outliers. It is a critical step, as poor-quality 

data can lead to biased or incorrect model predictions. Strategies such as imputation (mean, median, 

or mode), deletion (removing rows/columns with missing data), or using machine learning models are 

utilized to predict missing values. Techniques such as Z-score, IQR, and visualization-based methods 

are applied in order to identify and handle extreme values that may distort model results. Smoothing 

techniques, such as moving averages or binning, help eliminate random noise in the data. 

Normalization aims to scale numeric data into a common range without distorting differences in the 

data. Z- Score normalization technique has been employed to standardize the data by centering it 

around a mean of 0 with a standard deviation of 1. Then, Feature extraction is applied that reduces the 

dimensionality of the dataset by transforming raw data into informative features. This step is crucial 

for improving model efficiency and avoiding overfitting. Principal Component Analysis (PCA) is 

employed which is a dimensionality reduction technique that transforms features into a set of 

uncorrelated variables called principal components, retaining most of the variance. Exploratory data 

analysis is the step where key insights about the data are gathered. EDA helps understand the 

relationships between variables, detect patterns, and uncover hidden trends, guiding further modeling 

efforts. 
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Figure 1: Proposed Model Framework 

For the purpose of constructing models and eliminating bias in datasets, researchers as well as 

practitioners frequently employ the K-fold cross-validation technique. With a k value of 10, the K-fold 

cross-validation technique has been applied. Ten equal-sized segments were created by randomly 

dividing the full dataset. Out of the Ten partitions, one partition was kept as the model's validation 

(testing set), and the other nine partitions are utilized as training data one for each model. With 

precisely one usage of each of the ten partitions as the validation data, the entire procedure has been 

repeated ten times. The summing function combines the outcomes of each iteration. To match the 

performance of the training and testing datasets, the issue of over-fitting and under-fitting has been 

minimized in the dataset. This method has the advantage of eliminating data bias, which is necessary 

for creating DL models that produce accurate results. 

The research includes the utilization of multiple deep learning architectures to enhance diagnostic 

accuracy by leveraging their unique strengths in handling different types of data. The models employed 

are Recurrent Neural Networks (RNNs) were applied to model temporal dependencies in voice 

recordings, allowing the system to capture patterns over time. This architecture excels at learning 

sequential relationships, making it effective for analyzing time-series data such as audio. Long Short-
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Term Memory (LSTM) Networks is used as a specialized type of RNN, LSTMs were used to capture 

long-range dependencies in sequential data. LSTMs are particularly effective in addressing the 

vanishing gradient problem, allowing the model to retain information over longer sequences. This 

capability was critical for processing the dynamic features of voice and handwriting data, where 

temporal patterns influence the overall diagnosis. Convolutional Neural Networks (CNNs) were 

utilized for analyzing handwriting images due to their strong performance in image recognition tasks. 

CNNs are designed to recognize spatial hierarchies in images, making them ideal for extracting 

features that relate to motor function from handwriting samples. 

To determine the most effective model for diagnostic purposes, a voting classifier was implemented. 

This ensemble method combined the predictions from each model—RNNs, LSTMs, and CNNs—

based on their performance. Soft Voting technique is applied in which soft voting was used, where 

each model provided a probability distribution over the possible labels. The final prediction was based 

on the average probabilities, offering a more nuanced aggregation of the models' predictions. 

By comparing the performance metrics such as accuracy, precision, recall, and F1-score—across 

individual models and the ensemble, the voting classifier selected the model or combination that 

demonstrated the highest diagnostic accuracy. This approach ensured a balanced decision-making 

process, improving the overall robustness of the system by integrating the complementary strengths of 

the deep learning architectures. 

3.4. Deep Learning Algorithms 

Many sophisticated deep learning models, each tailored to the unique modalities of the dataset, have 

been used in this investigation. In particular, we used Convolutional Neural Networks (CNN) for 

image data and Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Gated 

Recurrent Unit (GRU), and Bidirectional LSTM models for clinical and audio data. 

3.4.1. Recurrent Neural Networks (RNNs) 

The RNN is utilized to handle sequential data, particularly suited for our audio and clinical datasets 

where time-based dependencies exist. The key feature of RNN is its ability to retain memory from 

previous steps in the sequence. Mathematically, the hidden state ht at time step t is computed as: 

ℎ𝑡  =   (𝑊ℎ 𝑥𝑡  +  𝑈ℎ  ℎ𝑡−1  + 𝑏ℎ)                               (1) 

where xt represents the input at time t, Wh are the weight matrices, bh is the bias term, and  is the 

activation function, typically the tanh function. 

The RNN model was designed with two layers of SimpleRNN units, with 128 and 64 units 

respectively, followed by dropout layers to reduce overfitting. The ReLU activation function was 

employed to introduce non-linearity, improving the model’s ability to learn complex patterns in the 

data. Additionally, a dropout rate of 20% was applied after each RNN layer to prevent overfitting, 

especially given the relatively small dataset. A Dense layer with a sigmoid activation function was 

used for binary classification, outputting probabilities for the two classes (healthy vs. Parkinson's). 

To further enhance performance, the model was compiled with the Adam optimizer, using a custom 

learning rate of 0.0005 to ensure smoother convergence. The binary cross-entropy loss function was 

selected for this classification problem, along with the accuracy metric to evaluate performance. The 

model was trained for 200 epochs with a batch size of 16, using early stopping to halt training if the 

validation loss stopped improving for 10 consecutive epochs. Early stopping helps prevent overfitting, 

ensuring that the model does not over-train on the training data. 

3.4.2. Long Short-Term Memory (LSTM) Networks 

LSTM is a variant of RNN designed to overcome the vanishing gradient problem, making it 

particularly useful for long-term dependencies. LSTM incorporates gates to control the flow of 



5565 | P a g 

e 

Multi-Modal Analysis of Parkinson Disease data Using Advanced Deep Learning Techniques 

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025  

 

information: 

Forget gate: 𝑓𝑡 =  (𝑊𝑓  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                    (2) 

Input gate: 𝑖𝑡 =  (𝑊𝑖  [ℎ𝑡−1, 𝑥𝑡] +   𝑏𝑖)                                                    (3) 

Cell state update: Ĉ𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝑐   [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑐)                                                    (4) 

Final cell state:  𝐶𝑡 =  𝑓 ∗  𝐶𝑡−1  +  𝑖𝑡  ∗  Ĉ𝑡                                                               (5) 

Output gate:  𝑜𝑡  =   ( 𝑊𝑜  [ℎ𝑡−1, 𝑥𝑡]  +   𝑏𝑜)                                                   (6) 

The hidden state is updated by: ℎ𝑡 = 𝑜𝑡 ∗  𝑡𝑎𝑛ℎ (𝐶𝑡)                                                     (7) 

LSTM’s gating mechanism allows it to selectively retain important information over longer sequences, 

making it effective for both clinical and audio data. 

The LSTM model was constructed with two LSTM layers, with 128 units in the first layer and 64 units 

in the second. A dropout rate of 20% was applied after each LSTM layer to mitigate overfitting. After 

the second LSTM layer, a dense layer with 32 units and a ReLU activation function was included, 

followed by another dropout layer. Batch normalization was added after the first LSTM layer to 

stabilize the learning process and accelerate convergence. The model's output layer used a sigmoid 

activation function for binary classification, predicting the likelihood of Parkinson's disease. The 

model was compiled using the Adam optimizer with a learning rate of 0.0005 and binary cross-entropy 

loss. Early stopping was employed to halt training when the validation loss no longer improved. 

3.4.3. Graded Recurrent Units(GRU) 

GRU is a simplified version of LSTM with fewer parameters, which makes it computationally 

efficient. The update and reset gates control the flow of information. 

Update gate: 𝑍𝑡 =  (𝑊𝑍  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑍) (8) 

Reset gate: 𝑟𝑡 =  (𝑊𝑟  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑟)  (9) 

The current hidden state ht is computed as: 

ℎ𝑡 = (1 −  𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑊ℎ  [𝑟𝑡 ∗ ℎ𝑡−1 , 𝑥𝑡] +  𝑏ℎ                          (10) 

The GRU model was designed with two GRU layers, with the first layer containing 128 units and the 

second layer containing 64 units. A dropout rate of 20% was applied after each GRU layer to combat 

overfitting. Batch normalization was included after the first GRU layer to enhance training stability 

and convergence speed. Following the GRU layers, a dense layer with 32 units and a ReLU activation 

function was added, along with another dropout layer. 

The output layer used a sigmoid activation function for binary classification, predicting the likelihood 

of Parkinson's disease. The model was compiled with the Adam optimizer, utilizing a learning rate of 

0.0005 and binary cross-entropy loss. An early stopping callback was also implemented to halt training 

when validation loss ceased to improve. 

3.4.4. Bidirectional LSTM (Bi-LSTM) 

The Bi-LSTM processes the sequence data in both forward and backward directions, improving the 

model’s ability to capture contextual information from the entire sequence. The forward hidden state 

F(ht) and backward hidden state B(ht) are computed separately: 

𝐹(ℎ𝑡) = 𝐿𝑆𝑇𝑀(𝑥𝑡, ℎ𝑡−1)                                                                (11) 

𝐵(ℎ𝑡) = 𝐿𝑆𝑇𝑀 (𝑥𝑡, ℎ𝑡−1)                                                                             (12) 

The final output is the concatenation of the two hidden states: 

ℎ𝑡 = [𝐹(ℎ𝑡), 𝐵(ℎ𝑡)]                                                                             (13) 
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Bi-LSTM is particularly useful when the sequence’s context from both past and future states matters, 

which improves the classification performance on  the clinical  and audio data. 

The Bi-LSTM model was constructed with two layers of Bidirectional LSTMs, enhancing its ability 

to capture temporal dependencies in both directions of the input sequence. A dropout layer with a rate 

of 20% was added to mitigate overfitting. Batch normalization was applied after the first Bidirectional 

LSTM layer to promote training stability. The second Bidirectional LSTM layer contains 64 units, also 

followed by a dropout layer. To further refine the output, a dense layer with 32 units and a ReLU 

activation function was added, along with another dropout layer. 

The final output layer uses a sigmoid activation function for binary classification, estimating the 

likelihood of Parkinson's disease. The model was compiled using the Adam optimizer with a learning 

rate of 0.0005 and binary cross-entropy as the loss function. An early stopping callback was included 

to prevent overfitting by halting training when validation loss does not improve. 

3.4.5. Convolutional Neural Networks (CNNs) 

CNN was used for image data classification of wave and spiral drawings. The model consists of 

multiple convolutional layers followed by pooling layers to extract spatial features. Mathematically, a 

convolutional layer applies a filter W to the input image x: 

(𝑊 ∗ 𝑥)(𝑖, 𝑗) =  ∑ ∑ 𝑊(𝑚, 𝑛). 𝑥(𝑖 + 𝑚, 𝑗 + 𝑛)𝑁−1
𝑛=0

𝑀−1
𝑚=0                                               (14) 

where W is the convolution filter of size M x N, and (i, j) denotes the location in the image. Pooling 

layer further reduces the dimensionality of the features, which are then passed through fully connected 

layers for final classification. In this study, two Convolutional Neural Network (CNN) architectures 

were employed for binary image classification. Both models were designed to handle color images 

with dimensions (img_width, img_height, 3) and consisted of convolutional layers for feature 

extraction, followed by fully connected layers for classification. The objective of both models was to 

extract hierarchical features from the images and perform binary classification using a sigmoid 

activation function in the final layer. 

The first CNN model is composed of three convolutional blocks. The first block utilizes 32 filters with 

a 3x3 kernel, followed by a ReLU activation function to capture low-level features from the input 

images. A 2x2 max-pooling layer is used to reduce the spatial dimensions of the feature maps, followed 

by two more convolutional blocks with 64 and 128 filters respectively, each with 3x3 kernels and 

ReLU activation. After each convolutional block, max-pooling is applied to down-sample the feature 

maps. The resulting feature maps are flattened into a one-dimensional vector before passing through 

fully connected layers. The first dense layer contains 128 neurons with ReLU activation, followed by 

a dropout layer with a 50% dropout rate to prevent overfitting. Another dense layer with 64 neurons 

follows, and finally, a single neuron with a sigmoid activation function is used for binary classification. 

This model is compiled with the Adam optimizer, a learning rate of 0.001, binary cross-entropy as the 

loss function, and accuracy as the evaluation metric. 

The second CNN model builds upon the architecture of the first model but introduces several 

modifications for improved regularization and convergence. It includes four convolutional blocks, 

with the number of filters progressively increasing from 32 in the first block to 256 in the fourth. Each 

convolutional layer is followed by batch normalization, which helps stabilize and accelerate training 

by normalizing the activations within each mini-batch. This is followed by a 2x2 max-pooling layer 

and a dropout layer with a rate of 0.25 to prevent overfitting. In this model, dropout is applied after 

every max-pooling layer, further reducing the risk of overfitting. After the convolutional layers, the 

feature maps are flattened, and two fully connected layers are introduced. The first dense layer contains 

256 neurons with ReLU activation, followed by a dropout layer with a 50% dropout rate for stronger 

regularization. A second dense layer with 128 neurons and ReLU activation follows, again with a 

dropout layer at a 50% rate. The final output layer consists of a single neuron with a sigmoid activation 
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function for binary classification. This model is compiled using the Adam optimizer with a reduced 

learning rate of 0.0001, which aids in better convergence during training, especially for deeper 

networks. The loss function remains binary cross-entropy, and the model evaluates its performance 

using accuracy. 

Both architectures were designed with the goal of effectively capturing image features while 

employing techniques like dropout and batch normalization to prevent overfitting and enhance 

generalization. The first model is simpler, while the second introduces more layers and regularization 

techniques, making it potentially more robust for complex datasets. 

Through the use of these algorithms, the study aimed to develop a robust classification model capable 

of accurately distinguishing between individuals with Parkinson's disease and healthy controls. 

4. Results and Discussion 

4.1. Result Analysis of Models used with Clinical Data 

Figure 2 represents the results obtained from the RNN model. The RNN model achieved an accuracy 

of 81.24% on the clinical dataset, demonstrating its effectiveness in classifying Parkinson's disease. 

The confusion matrix revealed that the model correctly identified 226 Parkinson's patients and 116 

healthy individuals, but misclassified 34 healthy patients and 45 Parkinson's patients. Precision for 

class 1 (Parkinson's) was 0.869, with a recall of 0.834, indicating strong performance in minimizing 

false positives. The F1-scores of 0.746 and 0.851 for healthy and Parkinson's classes, respectively, 

reflect a good balance between precision and recall. 

 

Figure 2. Result of RNN model with Clinical Data 

The LSTM model demonstrated solid performance, achieving an overall accuracy of 80.29% as 

depicted in Figure 3. The precision for class 1 (Parkinson's) was 0.862, indicating the model's 

effectiveness in minimizing false positives. However, the precision for class 0 (healthy) was slightly 

lower at 0.708, revealing challenges in distinguishing some healthy individuals from those with 

Parkinson's. The F1-scores of 0.733 and 0.844 for healthy and Parkinson's classes, respectively, reflect 

a balance between precision and recall, although the model showed a slightly lower performance in 

detecting healthy cases. The confusion matrix highlights that while the model successfully identified 

a majority of Parkinson's patients, it misclassified 47 cases, suggesting a need for further refinement. 
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Figure 3. Result of LSTM with Clinical Data 

Figure 4 shows the results of GRU model that demonstrated robust performance with an accuracy of 

82.42%, outperforming both the RNN and LSTM models. The precision for class 1 (Parkinson's) was 

0.886, indicating a strong ability to minimize false positives. Meanwhile, the precision for class 0 

(healthy) was 0.729, suggesting that some healthy cases were misclassified as Parkinson's. The F1-

scores of 0.766 for healthy individuals and 0.859 for Parkinson's patients illustrate a well-balanced 

performance in terms of precision and recall. Notably, the model misclassified 45 Parkinson's cases, 

indicating potential areas for improvement, possibly through further feature exploration or 

hyperparameter tuning. The Bidirectional LSTM model was evaluated on the clinical data for 

Parkinson's disease classification, yielding an accuracy of approximately 80.05% as the Figure 5 

shows. The confusion matrix revealed that the model correctly classified 107 instances of healthy 

patients and 230 instances of Parkinson's disease patients, while misclassifying 43 healthy instances 

and 41 Parkinson's instances. The classification report highlighted the precision for healthy patients 

(label 0) at 72.30% and for Parkinson's patients (label 1) at 84.25%. The recall values were 71.33% 

and 84.87%, respectively, indicating that the model is effective in identifying Parkinson's patients but 

slightly less so for healthy patients. The F1-scores were 71.81% for healthy patients and 84.56% for 

Parkinson's patients, demonstrating a balance between precision and recall. 

 

Figure 4. Results of GRU with Clinical Data 



5569 | P a g 

e 

Multi-Modal Analysis of Parkinson Disease data Using Advanced Deep Learning Techniques 

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025  

 

 

Figure 5. Results of Bidirectional LSTM with Clinical Data 

4.2. Result Analysis of Models with Audio Data 

The RNN model achieved an impressive accuracy of approximately 94.87% on the audio dataset as 

depicted by Figure 6. The confusion matrix indicated that the model correctly classified 5 out of 7 

negative samples and all 32 positive samples. The precision for class 0 was perfect at 1.00, while class 

1 had a precision of 0.94. The recall for class 0 was 0.71, indicating some missed predictions, whereas 

class 1 achieved a perfect recall of 1.00. The F1 scores were 0.83 for class 0 and 0.97 for class 1, 

highlighting the model's strong performance overall. These results demonstrate the effectiveness of 

the RNN model in classifying audio data, achieving a balanced trade-off between precision and recall. 

 

Figure 6. Result of RNN model with Audio Data 

Figure 7 shows the results of LSTM model on audio data. The LSTM model achieved an accuracy of 

approximately 92.31% on the audio dataset. The confusion matrix shows that the model correctly 

identified 5 out of 7 negative samples and 31 out of 32 positive samples. The  precision for class 0 was 

0.83, indicating some misclassifications, while class 1 had a higher precision of 0.94. The recall for 

class 0 was 0.71, suggesting it missed some negative samples, whereas class 1 had a recall of 0.97. 

The F1 scores were 0.77 for class 0 and 0.95 for class 1, reflecting the model's strong performance 

overall. 
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Figure 7. Results of LSTM model with Audio data 

For the GRU model on the audio dataset, the results are quite similar to the LSTM model, with an 

accuracy of approximately 92.31% as Figure 8 represents. The confusion matrix indicates that the 

model successfully identified 5 out of 7 negative samples and 31 out of 32 positive samples. The 

precision for class 0 was 0.83 and for class 1 it was 0.94, indicating strong performance in classifying 

positive samples. The recall for class 0 was 0.71, showing some room for improvement, while class 1 

had a high recall of 0.97. The F1 scores were 0.77 for class 0 and 0.95 for class 1, reinforcing the 

GRU's effectiveness in classifying audio data. 

The results for the Bidirectional LSTM model on the audio dataset show an accuracy of 89.74% 

depicted in Figure 9, which is slightly lower than the previous models. The confusion matrix indicates 

that the model correctly classified 5 out of 7 negative samples and 30 out of 32 positive samples. The 

precision for class 0 is 0.71, while for class 1, it’s 0.94, reflecting the model's strong ability to identify 

positive samples. The F1 scores of 0.71 for class 0 and 0.94 for class 1 further emphasize the model's 

overall performance. 

 

Figure 8: Results of GRU model with Audio data 
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Figure 9: Results of Bidirectional LSTM model with Audio data 

4.3. Result Analysis of models with Image Data 

The results for the CNN model without Batch Normalization show an accuracy of 82.93% as depicted 

in Figure 10. The precision for class 0 is 0.79, while for class 1, it’s 0.88, showing the model’s ability 

to accurately classify positive samples. The recall for class 0 is 0.90, and for class 1, it’s 0.75, indicating 

that the model is more effective at identifying negative samples. The F1 scores are 0.84 for class 0 and 

0.81 for class 1, highlighting the model's balanced performance, though it slightly struggles with 

classifying positive samples. 

The results for the CNN model with Batch Normalization show an improved accuracy of 85.37%. The 

precision for both class 0 and class 1 is 0.86 and 0.85, respectively, showing that the model has a 

balanced capability to classify both positive and negative samples. The recall for both classes is 0.86 

and 0.85, indicating that the model is effective at detecting both types of samples. The F1 score is 0.86 

for class 0 and 0.85 for class 1, highlighting the overall consistency and balance in the model’s 

performance across both classes. Batch Normalization seems to have contributed to slightly better 

results compared to the model without it. 
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Figure 10. Result of CNN without Batch Normalization 

 

Figure 11. Result of CNN with Batch Normalization 

Table 1 presents the comparative analysis of different deep learning models applied to clinical, audio, 

and image data for performance evaluation. The results indicate variations in accuracy across different 

model architectures, highlighting their effectiveness for specific data modalities. For clinical data, the 

Gated Recurrent Unit (GRU) model achieved the highest accuracy of 82.42%, outperforming 

Recurrent Neural Network (RNN) (81.23%), Long Short-Term Memory (LSTM) (80.28%), and 

Bidirectional LSTM (Bi-LSTM) (80.04%). The superior performance of GRU can be attributed to its 

ability to efficiently capture long-term dependencies while reducing computational complexity 

compared to LSTM. The Bi-LSTM, despite capturing bidirectional dependencies, did not show a 

significant improvement over standard LSTM, possibly due to data characteristics and sequence length 

constraints. For audio-based classification, RNN performed the best, achieving an accuracy of 94.87%, 

followed by LSTM (92.3%) and GRU (92.3%), while Bi-LSTM (89.74%) showed slightly lower 
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performance. The high accuracy of RNN suggests that sequential dependencies in audio signals are 

effectively modeled by simpler recurrent structures without additional gating mechanisms. The 

performance decline in Bi-LSTM may be due to the increased number of parameters, which might 

have led to overfitting in this dataset. In image-based classification, Convolutional Neural Network 

(CNN) with Batch Normalization demonstrated superior accuracy (85.36%) compared to CNN without 

Batch Normalization (82.92%). The improvement suggests that batch normalization effectively 

stabilizes learning by normalizing feature distributions, thereby enhancing convergence and reducing 

internal covariate shift. This confirms the significance of batch normalization in improving CNN 

performance for image-related tasks. 

Table 1: Result Analysis of Different Models 

Type of Data Model Accuracy (%) 

Clinical 

RNN 81.23 

LSTM 80.28 

GRU 82.42 

Bi-LSTM 80.04 

Audio 

RNN 94.87 

LSTM 92.3 

GRU 92.3 

Bi-LSTM 89.74 

Image 
CNN without Batch Normalization 82.92 

CNN with Batch Normalization 85.36 

5. Conclusion 

In this study, we systematically evaluated the effectiveness of various deep learning models for 

classifying Parkinson's disease using multi-modal data, encompassing clinical, audio, and image 

datasets. The comparative analysis of Recurrent Neural Networks (RNN), Long Short-Term Memory 

(LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (Bi-LSTM) for clinical and audio 

data, along with Convolutional Neural Networks (CNN) with and without Batch Normalization for 

image data, revealed distinct performance variations across modalities. 

The RNN model achieved the highest accuracy for audio data, suggesting its effectiveness in capturing 

temporal patterns within speech signals, a key biomarker for Parkinson’s disease. For image-based 

classification, CNN with Batch Normalization outperformed its counterpart, demonstrating the 

advantages of normalization in enhancing model stability and generalization. Meanwhile, the models 

trained on clinical data exhibited competitive performance, underscoring their potential utility in 

medical diagnostics. 

These findings reinforce the importance of selecting modality-specific deep learning architectures to 

optimize classification accuracy. Furthermore, they highlight the potential of deep learning in early 

and non-invasive detection of Parkinson’s disease, paving the way for more robust and interpretable 

AI-driven diagnostic tools. Future work may focus on hybrid models, multi-modal fusion strategies, 

and explainability techniques to enhance clinical applicability and ensure reliable decision-making in 

real-world healthcare settings. 
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