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Introduction: Frequent disruptions in breathing during sleep also known as Sleep Apnea
Sleep (SA), is a common sleep disorder, that poses serious health concerns all across the world.
Apnea, Global prevalence of SA is very high, around 936 million adults are suffering from this
Deep disorder worldwide. Primary causes of SA include Obesity, old age, being male, high BMI
learning, and some other causes are smoking, alcohol, opium consumption etc. If untreated on time,
CNN, has severe consequences like morning head ache, daytime sleepiness, fatigue,
ECG, hypertension, diabetes, cognitive impairments and in some cases, it extends to
Blood cardiovascular diseases, stokes as well.
Oxygen
Saturation Objectives: The aim of this research-study is to identify sleep apnea events through the
(Sp02), a_nalyisis of Electrocardiogram (ECG / EKG), Blood Oxygen saturation level (SpO2)
AHI signals.

Methods: The study employs the PhysioNet Apnea ECG 1.0.0 dataset for training a
machine learning/deep learning algorithm. The proposed system processes ECG and SpO2
data concurrently, with machine learning models trained individually for each type of
signal. ECG signals offer crucial insights into heart rate variability and arrhythmias, while
SpO2 measurements reveal variations in blood oxygenation during sleep. Training models
on these individual signals allows for the capture of unique properties significant to sleep
apnea identification. A new feature space is formed by concatenating the features extracted
from both these signals and then a 1D-CNN model was trained-tested on this new feature
set, enhancing the overall accuracy of predictions. Using ECG and SpO2 data, this model
accurately identifies apnea occurrences.

Results: The technique yielded promising results, potentially enhancing the early-stage
diagnosis and treatment recommendation for sleep-apnea. Our research analysis attained
Accuracy, Specificity and AUC of 91%, 92% and 0.93 respectively.

Conclusions: Using multimodal approach like ECG and SpO2, performance of Sleep-
apnea predicting models can be increased to a level that physicians can rely on. Future
research will explore the integration of additional physiological signals like limb
movement, chest and abdomen movement etc. and generate recommendations for sleep
apnea patients by building recommender systems on top of these results.

1. Introduction

Sleep apnea (SA) is a type of sleep disorder having very high prevalence rate. SA is defined by
breathing pauses during sleep. Patients have either complete cessation (apnea) or diminished airflow
(hypopnea) to their lungs for more than 10 seconds [1]. Over 200 million peoples are suffering from
this disease worldwide, men are more susceptible than women as per the recent survey. Obstructive
Sleep Apnea (OSA) is a type of SA that interferes with the sleep cycle and is linked to numerous
negative outcomes, including cardiovascular disease, heart failure diabetes mellitus, impaired
cognitive function, mental health issues, depression, diminished quality of life, changes in brain
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structure, and persistent fatigue, atrial fibrillation [2]-[4]. Sleep-disorders such as Periodic-Limb-
Movement during Sleep (PLMS) and OSA are generally linked to each other [5]. The accurate
diagnosis of apneac events is crucial for developing successful SA treatment and management method.
Polysomnography (PSG), Photoplethysmography, ECG, EEG, SpO2 signals etc. are popular diagnosis
tools whereas Epworth Sleepiness Scale (ESS), Stob-Bang Questionnaire (SBQ) help to measure OSA
severity level [6]-[9]. While ECG signal provides crucial information about heart which is often
associated with apneac events, SpO2 signal provides insights into oxygen saturation/ desaturation
levels which is also linked to apneac events.

This research work is based on PhysioNet Apnea-ECG v1.0.0 database for SA classification [10], [11].
The ML algorithms such as SVM, RF, DT can be trained-tested on ECG and SpO2 signals to identify
key features for SA detection [12]-[16]. Similarly, DL models such as CNN, HMM, ANN etc. have
potential to detect SA and significantly improve treatment for the disease [17]-[20]. This multi-modal
analysis aims to provide a more reliable and efficient method for diagnosing sleep apnea, potentially
leading to earlier intervention and improved treatment of the condition. Outline of this research paper
is as follows; Section-1 introduces the various methods available for SA detection. Section-2 provides
a summary of prior research on the identification of sleep-apnea through physiological indicators.
Section-3 discusses the dataset used and preprocessing methods required. Section-4 details the ML /
DL models and the ensemble learning strategy implemented in this study. Section-5 presents the
discussion on results obtained through experimental work. Finally, Section-6 consist of conclusion of
the paper and proposed directions for future research.

2. Literature survey

Sleep-apnea, a highly-prevalent sleep disorder which is marked by pauses in breathing-in air during
sleep. These pauses can be complete stops (apnea) or reductions in airflow (hypopnea) lasting over 10-
seconds. Precise diagnosis of sleep apnea is vital for determining effective treatment and management
plans (Bahrami et al.) [21].

Researcher Chang et al. [18] developed an approach based on a 1D-CNN-model considering ECG
measurements for SA detection. The model demonstrated high accuracy for apnea detection by
achieving 87.9% for per-minute, per-segment whereas accuracy of 97.1% for per-recording
classification obtained. It outperformed other feature-based strategies. However, the study's limitation
was its lower sensitivity, which was 81.1% for per-minute apnea detection. Reduced sensitivity may
lead to the misidentification of apnea events as normal, which can lower the estimated Apnea-
Hypopnea-Index (AHI) and potentially result in the misclassification of patients during per-recording
classifications. Many cases of OSA go undiagnosed and hence untreated because of the cost and
practical restrictions of night-long polysomnography (PSG) tests. Researchers Almazaydeh at el. [13]
used electrocardiogram (ECG) data with support vector machines to create an automatic categorization
algorithm. This approach achieves around 96.5% accuracy in recognizing sleep disturbance epochs
and may serve as a foundation for future OSA screening systems. The researchers employed a distinct
set of characteristics based on RR-intervals to train a SVM for classification tasks. They evaluated the
model using three varying epoch durations: 10 seconds, 15 seconds, and 30 seconds. The SVM,
utilizing a linear kernel, attained the highest accuracy with the 15-second epochs. However, the authors
did not explore strategies for optimal feature selection. Pombo at el. [22] investigates the efficacy of
five classifiers, namely SVM, ANN, PLS, LDA and aNBC for detecting sleep apnea instances using
minute-by-minute electrocardiogram (ECG) readings. The article discusses the accuracy comparison
of several classifiers. The article evaluates the accuracy of different classifiers. To find out Heart Rate
Variability (HRV), ECG-Derived Respiration (EDR), a Savitzky-Golay filter is applied to each ECG
signal. These features were utilized for train-test and validation purposes. The results show an accuracy
of 82.12%, a specificity of 72.29%, a sensitivity of 88.41%. Furthermore, an extended feature analysis
evaluates the significance of all categorized features. Drawback of their study was they did not include
feature selection for finding an ideal characteristic set for the identification of sleep-apnea.
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Researchers Paul et al. [23] looked for an alternative to the time-consuming and costly PSG-test. They
developed a real-time SA detection system, incorporating SpO2 and ECG data. Three models were
trained over R-R intervals extracted from raw ECG data, one model for SpO2, another for ECG, and
a combined model (ECG + SpO2). The combined model outperformed the separate signal-based
models, obtaining an accuracy of 91.83% using the dual-channel approach. Issues with their study was
the reduced accuracy of the ECG-based model was related to an inaccurate QRS detector.

Wang et al. [24] utilized a time-window ANN alongside single-lead ECG measurements for the SA
detection. This method takes into account temporal relationship between ECG segments. The dataset
on which these researchers were working, does not include annotations to discriminate between
various forms of respiratory disturbances such as apnea and hypopnea. So, it is difficult to design
models to distinguish between two categories.

Varshan et al. [25] aim to create a system that identifies sleep-apnea through analysis of single-lead
ECG. They have employed ML and DL methods to detect anomalies associated with SA from ECG
data. Researchers achieved a classification accuracy of 79.99% for SVM classifier and 81.77% for
hybrid DNN VGGL16.

Zhang et al. [26] focused on designing an efficient OSA diagnosis and management method. They
have employed single-lead ECG data for training a DL model which not only detects SA but also
measures its severity. Their work includes signal preprocessing, feature extraction, concatenation of
time-domain and frequency-domain features for classification. These authors have tested the model on
375 PSG patients and found it highly effective. They have evaluated models’ performance on publicly
available dataset proving its feasibility for SA detection.

3. Methods

Our research includes ECG and SpO2 signals for Sleep-Apnea diagnosis.

3.1 ECG based diagnosis: The Apnea-ECG V1.0.0 dataset [10], [11], sourced from
https://www.physionet.org/about/database/ under an open-source license, was employed for the SA
detection. We developed and evaluated our Deep Learning models using this database. This dataset
includes 70 medical-records from 32 subjects (7 females, 25 males, age 44+11 years, weight 8622
kg, height 1756 cm) categories into 4-classes respectively A, B, C, and X.

Table -1 Apnea-ECG dataset statistical details

G | Sa | AHI | Classi | Rec | Sam | Anno
r. |m- | Ran | ficati |o. p. ta-
ple | ge on Len. | Rate | tion
siz Freq.
e
0 <
A |13 | AHI '\:0"“
<5 |2
B |13 AHI | Sever
>30 | e 8.9 +
5 < | Mild/ e 1-min
C |6 AHI | Mode 0.52" 100 interv
hour | Hz
<30 | rate als
S
Norm
5 <al,
X |35 | AHI | Mild,
<30 | Sever
e

For statistical details please see Table-1. This dataset includes annotations provided by sleep experts
for the presence of apnea events. The ECG waveforms were segmented into one-minute intervals for
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analysis. R-R intervals were extracted from the ECG data using Hamilton R-peak identification
method. Analyzing physiological signals is significantly challenged by noise and motion distortions.
We mitigated this by applying a median filter to the ECG signals. However, for more reliable apnea
diagnosis, it is advisable to employ artifact rejection and correction techniques. These methods involve
removing or correcting heavily contaminated data points using autoregressive models. Fig. 1
represents the annotations provided by sleep experts for the ECG signals, where Apneac events were
represented by ‘A’ and normal breathing events represented by ‘N’.

AVAYAVAYA IRV VA

N N A A N A A N

A —Apneac Event N —Non-Apneac Event
~ - Time duration of Apneac event
‘I’ — Annotation Time interval in sec. (0, 60, 120, .....sec)

Fig. 1 Annotations for Apneac and Non-Apneac events

Table-2 provides summery of various parameters extracted from ECG signal. Feature Extraction and
Processing followed by apnea event detection process as depicted in Fig. 2 below. After performing
suitable preprocessing on ECG data, the R-R intervals obtained were inputted into machine learning
algorithms. Additionally, the heights of the R-peaks were also obtained. A frequency of 3Hz for Cubic-
Interpolation was applied to both the R-peak and the R-R intervals to maintain a consistent sampling
rate. Subsequently, these interpolated signals were fed to deep learning model. Electrocardiogram
(ECG) data are often used to extract various HRV characteristics. These characteristics reflect the
variability in the time intervals between consecutive heartbeats, thus helpful in detection of apneac
events.

Sleep A.pnea Segmentation RR-interval
ECG signal — : == P
(1 min segment) extraction
Dataset
R-peak amPhtude CNN
extraction
Apnea
Detection

Fig. 2 CNN based architecture for ECG signal analysis

Table — 2 Summary of the key features extracted from ECG signal
Time-Domain Features Extraction

Feature name Description

SDSD (Standard
Deviation of Successive
Differences)

NN20

This long-term feature assesses the variability among nearby R-R
intervals, which are the durations between consecutive heartbeats.

NN20 signifies the count of R-R interval differing at-least 20-
milliseconds.

Number of R-R intervals which are more than 50 milliseconds
apart.

NN50
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NN50 The pNNS50 is the % of successive R-R intervals that vary by 50-
P milliseconds from each other.
ONN20 The term pNN20 refers to the % of consecutive R-R intervals that

vary by 20-milliseconds from each other.

RMSSD (RMS value of
Successive-
Differences)

This short-term feature describes the range of normal heartbeat
variations.

Nonlinear Features

SD1 and SD2 Poincare plot attributes.

(SD2/SD1) Ratio of attributes.

CVI The cardiovagal index.

Csl The cardio sympathetic index.

Frequency-Domain Features

VLE The thermoregulatory systems are associated with the VLF band,
ranging from 0.0033 to 0.04 Hz.

LF The low-frequency range (0.04-0.15 Hz) is primarily associated
with sympathetic activation.

HE The high-frequency range (0.15 to 0.4 Hz), is indicative of

parasympathetic-activity.

VLF power, LF power, The analysis includes total power for each ECG segment.

HF power
SpO2+Flew | | Down | | [ 7= '
| signal dataset | | | Sampling | ,an“on,, L Segmﬂ'unlonj
l
Preprocessing ‘
CNN
|
- L
Apnea Event
Detection

Fig. 3 CNN based architecture for Sleep Apnea detection from SpO2 signal

Each ECG segment typically yields 13 characteristics in the time domain. Our research utilized the
PhysioNet Apnea-ECG Database v1.0.0. Nevertheless, this database has limitations, such as a limited
number of patients with mild and severe OSA and a dearth of CSA events. Future studies should aim
to compile a more comprehensive dataset encompassing various types of apneas.

3.2  SpO2 based diagnosis:

For SA-detection using SpO2 signals, our research utilizes the sleep-apnea database Apnea-ECG
V1.0.0 dataset [10], [11], containing polysomnogram records of 35 patients over 7-10 hours with
second-by-second annotations. The medical-records namely a0l.... a04, b01 and cO1...... c03, include
four extra signals: Resp-C and Resp-A where Inductance plethysmography was employed to collect
chest and abdomen breathing effort signals, Resp-N: Nasal thermistors are used to measure nasal
airflow, SpO2 serves as an indicator of saturation. The network employs peripheral oxygen saturation
(Sp02) signals recorded at an 8-Hz sampling rate. Experimental results clearly show lower SpO2
values during the Apneac event. The data is divided in train-test and validation. SpO2 measurements,
taken at one-minute intervals, formed a crucial subset of characteristic data. The attributes of these
intervals, such as the maximum, minimum, and other variables detailed in Table-3, were utilized to
diagnose apnea. Characteristics of SpO2 were extracted post-preprocessing, and 1D-CNN was
employed for SA-diagnosis.
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Fig. 3 illustrates the overall methodology which includes downsampling of signals followed by
filtration stage to remove noise and artifacts and segmentation stage to divide signal into segments of
1-minute duration. Each segment is identified as either an apneac event or a non-apneac event.
Segments shorter than one minute, like 30-second intervals, were not considered. Consequently, the
data in this study was annotated in one-minute intervals. These characteristics help in detecting patterns
and anomalies in oxygen-saturation.

Table-3 highlights critical aspects extracted. These metrics help identify patterns and anomalies in

sleep-cycles.
Table 3 - The statistical features of - SpO2 signal (over 1-minute segment)
Feature Feature Description
Name
Smin Minimum value SpO2 level
Smax Maximum SpO2 level
Smean Average SpO?2 level
Svari SpO2 Variance
Correc Correlation-factor of SpO2
data
Average of the absolute
D differences between two
mean adjacent mean-values of
SpO2-signal.
Measures the count of (per
oDI hour of sleep) blood-oxygen-
level drops by a certain
amount from the baseline
The percentage of time
CT90 during which the SpO2 level
is below 90%
The frequency and duration
Desaturation | of significant drops in SpO2
Events levels, typically 3-4% drop or
more from the baseline.

SpO2 characteristics combined with characteristics of ECG-signals can increase the accuracy of SA
detection.

4. Proposed System

The Fig. 4 shows proposed method for sleep-apnea detection. Initially, features were extracted
independently from both ECG and SpO2 signals, collecting key physiological signs associated with
sleep apnea. The next step is to combine these features into a unified dataset in order to provide a more
comprehensive depiction of the patient's status by merging the temporal and spectral properties of both
signals. This integrated dataset used to train/test a DL algorithm, which was chosen based on its
capacity to handle multi-modal data and properly detect sleep apnea occurrences. The integration of
ECG and SpO2 characteristics is anticipated to enhance the robustness and dependability of the system.
This approach can enhance the accuracy and reliability of the diagnosis. Fig. 5 shows process flow for
the same.

Preprocessing stage of SpO2 Signal filters out noise by using low-pass filters and normalize the signal.
Whereas for ECG Signal removal of baseline wander and noise using bandpass filters were performed
followed by normalization of the signal. In feature extraction stage from SpO2 signal Time-domain &
Frequency-domain features were extracted like Mean, standard deviation, minimum, maximum,
desaturation events, and duration, Power spectral density, dominant frequencies, and spectral entropy.
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From ECG signal following features were extracted RR intervals, HRV metrics, Power spectral density
of HRV, LF/HF ratio etc.

Apnea-
Sp0O2
Dataset

Apnea-
ECG
Dataset

Data pre- Data px.”e
. processing
processing and
and Feature
A Feature
Extraction 2
Extraction

Fusion of
Features

l

Training and
Validation of
ML model

Sleep-Apnea
Event
Detection

Fig. 4 Proposed system for Sleep-Apnea prediction from ECG and SpO2 signals

Fig. 5 Process-flow for Sleep-Apnea detection from ECG and SpO2 signal

In Feature Fusion stage we have concatenated features from both SpO2 and ECG signals. This can be
done by concatenating the feature vectors from both signals. For feature selection stage we used
techniques like Recursive Feature Elimination with Cross-Validation (RFECV). Finaly in model
training stage we trained a 1D CNN using these combined features set to classify apnea events.

= » Fmenng &)
Apres- »f SEmpng ANRCTS b 800z
ECG Segmantatan temnovel SpOL
DatAbas0 == Databsse

P — /
¥ v
Time-comamn | Frequency domasn
Frequency Temporal Feature
| | domain Feature Extraction o Fusion
Extraction R = Concatenation

e

Foature

7
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' rooe! o 1 mlmxggl ::q(n-e'
5. Result and Discussion

Experimental analysis shows improving in sleep-Apnea diagnosis using combined features of ECG
and SpO2 signals in contrast to SA-diagnosis using individual signals. Table-7 below shows diagnostic
accuracy of 91% against accuracies of 89% and 90% for ECG and SpO2 signals based diagnosis
respectively.

We build CNN model with the help of 3-convolution layers each followed by a Max-pooling layer.
These Convolution layers extract hidden patterns among data with the help of small size filters,
activation function used is “ReLU” to add non-linearity to the model. Pool size of 2 used for
downsampling data to reduce the dimensionality. After Convolutional and Pooling layers, we have
used 2-dense fully connected layers with 128 neurons each to flatten the data and produce final

Sheep-Apaca Detection Precess
Foature Etulmmq'

Loaming Medd  Fostire

3018 |Page



A Novel Deep Learning Approach for Diagnosing Sleep Apnea Using Feature Fusion of

&EE]PH ECG and SpO2 Signals
@ SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-25

classification. At the output we have used a single neuron with sigmoid activation function to make
final classification. We set binary cross-entropy as loss function and Adam-optimizer is used to reduce
this loss function. Table-7 bellow discuss the performance of CNN model.

Table-4 gives comparative view of SA-diagnosis methods proposed earlier by various researchers and
our proposed Cardiorespiratory method. The CNN model underwent training followed by validation
process on a desktop computer with configuration as Processor - Intel(R) Core (TM) i5-1035G1 CPU
at 1.00GHz - 1.19GHz, Operating System: Windows-10 Professional and a GeForce(R) RTX 2080
Super (TM) 8GB graphics card.

The first epoch, including weight initialization, took 61 seconds, while subsequent epochs from the
second to the fifth took 57 seconds each. Completing one experiment required roughly 48 - 50 minutes.
The trained model is capable of classifying a 1-minute ECG signal as normal or indicative of apnea in
just 0.3 seconds.

OSA as per definition of the American Academy of Sleep Medicine (AASM) is characterized by an
Apnea-Hypopnea-Index (AHI) of five or more [24]. The AHI can be determined by the equation-(1)
shown below:

AHI = (22) x Num....... (1)

Here, 'Len’ denotes the total count of 1-minute ECG segments, 'Len/60" is the duration of the recording
in hours, and 'Num' represents the number of 1-minute apneas observed.

Table-5 shows results obtained by HRV-analysis of 3-different categories of ECG signals. One with
normal ECG-signal, another one is T-wave distorted signal and a ECG-signal with Sleep-Apneac
events.

Table-5 Results obtained for ECG signal analysis using HRV-analysis function

Param- | ECG ECG
eters signal Normal | signal
with  T- | ECG with
wave signal Apneac
distortion events
bpm: 57.843 59.697 74.642
ibi: 1037.29 1005.075 [803.834

sdnn: 60.907 45.612 25.854
sdsd: 20.513 17.278 8.060
rmssd: 33.059 30.487 13.118
pnn20:  |0.493 0.483 0.104
pnn50:  ]0.135 0.118 0.000
hr mad: [36.000 28.000 16.000

sdl: 23.285 21.545 9.273
sd2: 84.306 59.912 35.471
S: 6167.32 4055.16  |1033.31

sd1/sd2: |0.2762 0.359 0.261

breafthmg 0133 0.1667 0.300
rate:

Various features extracted and their values were shown for the purpose of comparison. Table-6 shows
the Sleep-Apnea events and Desaturation events detected from SpO2 signal by our proposed method.
Only 8-petients data has been shown here.
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Table-6 Analysis of SpO2 signals for SA-detection
Count

Patient Count of
Total of .
name/ Desaturation
. Samples | Apnea
Patient scanned events events
ID detected

detected
a0l 2956796 | 11751.0 | 6904.0
a02 3181796 | 12661.0 | 9378.0
a03 3134796 | 12501.0 | 9112.0
a04 2979796 | 11885.0 | 7864.0
b01 2916796 | 11633.0 | 11371.0
c01 2898796 | 11561.0 | 11476.0
c02 3006796 | 11993.0 | 11813.0
c03 2719796 | 10845.0 | 10771.0

We utilized accuracy, sensitivity and specificity as metrics for performance measures as shown in
equation - 2,3,4 below:

e .. TP
Sensitivity = TPEN) (2)
pi s TN
Specificity = TNERE) (3)
_ (TP+TN)
Accuracy = TNy e 4

In this context, ‘FN’ and ‘FP’ represent the number of normal and Apneac segments that have been
wrongly classified, respectively. ‘TP’ represents number of Apneac segments and ‘TN’ represents the
normal segments correctly identified. The terms in equation — (4) negative (N) and positive (P) indicate
the count of segments without and with Apneac events, respectively. Sensitivity measures the fraction
of apnea epochs accurately identified, specificity measures the fraction of normal epochs accurately
identified, and accuracy reflects the fraction of all segments accurately classified.

6. Conclusion

The article outlines a new method for identifying sleep apnea events by integrating features from ECG
and SpO2 signals. The CNN model implemented in this research work successfully detects apneac
events and oxygen desaturation associated, with an accuracy up to 91%. The results also highlighted
that multi-signal approach has enhanced SA detection performance as compared to individual signal
approach where accuracies up to 89% for ECG and 90% for SpO2 signal is achieved. An AUC of 0.93
suggest our model’s effectiveness in providing insights into disease identification. Our research
highlights the relation between Sleep Apnea and Heart diseases but we could not establish relation
between Sleep-Apnea and brain strokes. Future research work could explore incorporating more
physiological indicators and advance computational intelligence to establish this relation. Our research
work provides valuable insights for effective management and treatment of the sleep-disorder that will
help to improve patient outcomes.
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Table - 4 Comparative study of proposed method with existing methods.

- Performance measures
Signal Processing Classifier
Authors 9 used
Acc. Sens. Spec. AUC
Varon et al RR interval Calculation;
" | EDR Derivation; R-peaks | LS-SVM 84.7% | 84.7 84.7 0.88
[12] : i
Detection/Correction
Chang et al. Bandpa_ss F_|Iter|ng; Z-score Deep CNN | 87.9% | 81.1 920 0.94
[18] Normalization
R-peaks Detection using
Song et al. | Filter-Bank; Median | HMM- 0
[19] Filtering; RR Interval | SVM 86.2% | 826 88.4 0.94
Calculation
Pre-trained
Sinah et al Bandpass Filtering; | AlexNet
g " | Continuous Wavelet | CNN +(86.2% |90.0 83.8 0.88
[20] i
Transform Decision
Fusion
Median  Filtering /FIR
Wang et al | fiering + Repeaks | SSNSYS 1g7606 831|903 | 095
[24] D . CNN
etection
Bandpass Filtering; QRS
[S;%rma etal | complex. R-peaks | LS-SVM | 83.8% |795 |884 |0.83
Extraction; Zero Padding
R-peaks Detection; RR | Artificial
, Interval Calculation; | Neural 0 0 0
Lietal. [28] Bandpass Filtering; Median | Network 97.8% 1 98.6% | 93.9% |0.97
Filtering; Interpolation (ANN)
Pronosed Segmentation; R-R interval
P detection: Filtering; | 1D-CNN | 91% | 87.6% |92% | 0.93
method .
Sampling

Table-7 Performance analysis of 1D-CNN with combined features of ECG, SpO2 signals

Signal Classifier | Accuracy | Precession | Recall F-1 Specificit AuC
score |y

ECG ID-CNN 89% 88% 90% 89% 88% 0.9

SpO2 ID-CNN 90% 89% 91% 90% 94.1% 0.9

Combined

Features of | CNN 91% 88% 91% 90% 92% 0.93

ECG + SpO2
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