

Development of Anemic Prevention Form of Self Care Management for Increasing Haemoglobin (Hb) Levels at Pregnant Women

Devi Permata Sari¹, Sri Sat Titi Hamranani², Arlina Dhian Sulistyowati³, Fitriana Noor Khayati⁴, Fitri Suciana⁵

¹Nursing Science Program, Faculty of Health and Technology, University of Muhammadiyah Klaten

Corresponding Author details: Devi Permata Sari

Email ID: devisariumkla@gmail.com

Address: Jombor Indah Street, Gemolong, Buntalan, Klaten Regency, Central Java,

Indonesia

KEYWORDS

ABSTRACT

APOS, Anemic, Pregnancy, Self care, Education Aims: This research aimed to describes the anemic prevention of self care of pregnant women. In this phase haemoglobin concentration usually decreases at first trimester and reaches its lowest level at the end of second trimester and increases again at third trimester of pregnancy. Low hemoglobin levels can lead to prenatal death, maternal death and fetal morphological abnormalities. Pregnant women's self-care during antenatal care to increase Haemoglobin level is needed in preventing anemia. Pregnant women need for nutrition management, routine of taking Fe tablets and hemoglobin management. There are fundamental problems related to management of pregnant women, namely lack of assistance and monitoring by health workers

Methods: This research design used experiment method with a pretest and post test control group approach. The samples taken are 15 pregnant women for each control and intervention group, using APOS (Anemic Prevention of Self care) form instruments.

Findings: The findings of the paired t test showed that there was a significant relationship between Hb levels before and after treatment using the APOS form with a p value of 0.000. While for the control group there was no correlation between the pretest and post test with a p value of 0.144. The results of the independent t test showed that there was a difference in hemoglobin levels in the intervention and control groups with a p value of 0.001.

Conclusion: As a conclusion, there is a positive effect on changes in hemoglobin levels with the use of the APOS form.

Introduction:

Anemia is a major health problem in Indonesia. The proportion of anemia in pregnant women has increased from 2013 to 2018 from 37.1% to 48.9% ¹. The increasing number of anemia sufferers in pregnancy has an impact on the health of the mother and fetus and is correlated with increased morbidity and fetal death. The impact on the mother includes difficulty breathing, fatigue, palpitations, infection, preeclampsia and bleeding. While on the fetus it has

²Nursing Science Program, Faculty of Health and Technology, University of Muhammadiyah Klaten

³Nursing Science Program, Faculty of Health and Technology, University of Muhammadiyah Klaten

⁴Nursing Science Program, Faculty of Health and Technology, University of Muhammadiyah Klaten

⁵Nursing Science Program, Faculty of Health and Technology, University of Muhammadiyah Klaten

Development of Anemic Prevention Form of Self Care Management for Increasing Haemoglobin (Hb) Levels at Pregnant Women SEEJPH Volume XXVII, 2025, ISSN: 2197-5248; Posted: 02-02-2025

an impact on IUGR, prematurity, and LBW 2 . Government efforts to prevent anemia in pregnant women include providing at least 90 Fe tablets during pregnancy 3 . However, from this program, there are some weaknesses in terms of compliance in consuming Fe tablets due to lack of monitoring in pregnant women. The level of consumption of TTD \geq 90 tablets is 38.1%, while <90 tablets is 61.9% 4 . In addition, low levels of education, lack of exposure to information and low ANC visits are factors causing low compliance with consumption of Fe tablets in pregnant women 5,6 . The occurrence of anemia in pregnant women is a pregnancy complication that can be prevented through patient self-care 7 .

Prevention of anemia can be done with various efforts, including primary prevention, namely through education on preventing anemia, and secondary prevention including treatment of anemia and its complications. In efforts to prevent anemia in pregnant women, the participation of health workers is needed. One of the efforts to prevent anemia is by using Self Care Management Anemia (SCMA). The Anemia Self Care Management approach can be applied to facilitate the patient's knowledge, attitudes and self-care skills together with the health team⁸. Health education is a factor that can increase a person's ability to improve knowledge, skills and attitudes related to self-care. Self-care aims to control Hb treat and prevent complications⁹. Prevention of anemia in pregnant women can be done by providing good knowledge, it is hoped that good knowledge can influence daily attitudes and behavior 10. This Anemia Self Care Management has been developed by several research instruments using questionnaires, applications, booklets and leaflets¹¹. The further research on providing health education during antenatal care is expected to increase prevention of anemia complications in pregnant women^{12,13}. Research that has been developed using health education media has not covered all Anemia management in pregnant women Based on this, it is necessary to develop a selfcare monitoring sheet for pregnant women based on information technology to facilitate monitoring by health workers

Prevention of anemia in pregnant women can be done by compliance with TTD consumption and the implementation of balanced nutritional intake. Behavior of preventing anemia was mostly poor, but in this study there were shortcomings because no educational intervention was given¹⁴. Further research about preventing anemia with Numil or education "Nutrition in Pregnant Women to Prevent Anemia" using power point, leaflets, distributing pocket books, and original food media. The research aims to determine the level of knowledge after being given education and monitoring the provision of Fe Tablets for 30 days. In this research, researchers focused on education and provision of Fe tablets¹⁵. However, this study did not monitor other aspects of anemia prevention, namely balanced nutrition. Other research conducted used interview and observation methods, in measuring compliance with Fe tablet consumption, diet and family support using questionnaires. This instrument is used to measure compliance with Fe tablets, diet and family support with anemia prevention efforts without looking at the Hb levels of pregnant women after the intervention. In this case, education has not been carried out in the study¹⁶.

The method of implementing anemia prevention is increasingly developing through several researches. The development of research that has been carried out for anemia prevention education in pregnant women by implementing anemia prevention education through an android application as an educational medium. This study measures the feasibility of the application as an educational medium in preventing anemia. The weakness in this study is that continuous monitoring has not been carried out and its function is only as a reminder¹⁷. Further research desired by the researcher is to develop a simpler and easier-to-use application. Anemia prevention education through monitoring Whats App groups and social media to control Fe consumption can improve self-care capabilities¹⁸. In addition to providing education, consumption of Fe tablets and implementation of nutritious food consumption, and physical activity to prevent anemia¹⁹. Salah satu aktivitas fisik yang dapat dilakukan adalah dengan

melakukan senam hamil. Therefore, in this research, monitoring of pregnancy exercises will be developed in efforts to prevent anemia in pregnant women.

Material and Methods:

The research design used the true experiment method with a pretest and posttest control group design approach. This study used a control group without monitoring and evaluation every week and used an intervention group that was monitored and evaluated every week through a WA group. The sample in this study was 15 pregnant women in the control group and 15 pregnant women in the intervention group. Analysis of average Hb levels in 3 months using a paired t test, analysis in comparing differences in average blood glucose levels in 3 months in the control and intervention groups using an independent t test. The instrument used was the Anemic Prevention of self-care management form consisting of knowledge about basic information, nutritional management, routine ANC, behavior of taking Fe tablets, hemoglobin management and Pregnancy Exercise.

Results:

Tabel I. Univariat analysis of Ages

Group	variabel	n	minimum	maximum	mean	Std deviation
Control group	ages	15	23	31	26	2.731
Intervention group	ages	15	20	34	25.6	4.564

Tabel II. Frequency distribution of control group and intervention group for parity, education, employment and maternal complications

No	Control group)	Interventi	Intervention group		
	f	Persen	f	persen		
Gestation ages						
Trimester 1						
Trimester 2	8	53.3%	9	60%		
	7	46.7%	6	40%		
Parity						
Primipara	10	66.7%	8	53.3%		
Multipara	5	33.3 %	7	46.7%		
Education						
Junior&Senior	7	46.7%	8	53.3%		
High School						
Diploma	8	53.3%	7	46.7%		
Bachelor						
Working						
Government	5	33.3%	4	26.7%		
employment						
Seller	2	13.3%	4	26.7%		
laborer	1	6.7%	6	40%		
Housewife	7	46.7%	1	6.7%		
Complication						
None	13	86.7%	15	100%		
Yes	2	13.3%	0			
Total	15	100%	15	100%		

Table III. Correlation test of Hb levels of pregnant women pretest and posttest in the control group and intervention group

Group	Std deviasi	Std error	t	df	Sig 2 tailed
Control Pretest and post test	0.6334	0.1636	-1.549	14	0.144
Intervention Pretest and posttest	0.9787	0.2527	-6.226	14	0.000

Table IV. Test for differences in Hb levels in pregnant women in the control group and intervention group

Group	F	Sig 2 tailed	t	df	Std error difference	lower	upper
Posttest control group and intervention	1.024	0.001	-3.634	28	-1.1154	-1.1154	3113

Discussion:

Pregnant women experience various changes, both physical and emotional. These changes are influenced by the age of the pregnant woman. The healthy age for reproduction is 20-35 years. Respondents in both groups are included in the healthy reproductive age. This is interpreted as too young or too old pregnant women will typically have numerous birth difficulties. When a mother gives birth at age 20, she is considered young, and when she gives birth after age 35, she is considered old. The mother's reproductive organs are not fully developed at fewer than 20 years of gestation. since of this, pregnant women at this age may have a longer or more difficult labor since the baby's head is larger and cannot fit through the pelvis. Furthermore, the power of the abdominal and perineal muscles has not functioned at its best, leading to lengthy or obstructed labor frequently requiring maneuvers like vacuuming.

The hemoglobin level of pregnant women is determined by the gestational age of the pregnant woman because it is related to the development of the pregnant woman's hematological system. Anemia is defined by the Centers for Disease Control and Prevention (CDC) as a hemoglobin concentration of less than 11 g/dL (hematocrit of less than 33%) in the first or third trimester of pregnancy, or less than 10.5 g/dL (hematocrit of less than 32%) in the second trimester. Reduced oxygen delivery to the tissues is the cause of Iron Deficiency Anemic symptoms, which can include pallor, exhaustion, apathy, fainting, and dyspnea. Preventing iron insufficiency is mostly dependent on nutritional intake, with a total iron consumption during pregnancy of no less than 1000 mg. Fetal growth is more adversely affected by iron shortage in the first trimester than by anemia that occurs later in pregnancy. Additionally, Iron Deficiency Anemic is linked to an increased risk of preeclampsia²⁰.

Pregnant women need a lot of information to improve their knowledge in caring for pregnancy. The information obtained needs to be absorbed and implemented for health, especially cases of anemia .This is influenced by the level of education of pregnant women.Pregnant women's educational attainment appears to be correlated with a lower occurrence of anemia. Pregnant

Development of Anemic Prevention Form of Self Care Management for Increasing Haemoglobin (Hb) Levels at Pregnant Women SEEJPH Volume XXVII, 2025, ISSN: 2197-5248; Posted: 02-02-2025

women who have completed high school or more are less likely to develop anemia, most likely as a result of receiving enough vitamin intake and receiving health education²¹.

In the meantime, a study conducted in Pakistan found that there was no significant correlation between educational attainment and anemia during pregnancy, and that in the multivariate regression analysis, lower educational attainment was not associated with an increased risk of anemia²².

The results of the study showed that there was a significant relationship in the intervention group before and after being given the APOS form intervention in an effort to increase hemoglobin levels in pregnant women. Pregnant women's bodies undergo enormous changes, and many physiological parameters resemble pathological situations, although many aspects actually undergo physiological adjustments. Erythrocyte mass can rise by 18–25% and plasma volume by 40–50% throughout the gestational period. Hemodilution happens when the erythrocyte mass increases in tandem with an increase in plasma volume. This changes the hemoglobin concentration. Because hemoglobin levels in the blood will be lower during pregnancy, particularly in the second trimester, the diagnosis of anemia during this time may be incorrect. However, there will be a normal physiological correction and increase in the third trimester²³.

APOS form consists of self-care of pregnant women during antenatal to increase Hb levels needed in preventing anemia in pregnant women including knowledge management, nutrition management, routine ANC, behavior of taking Fe tablets, use of footwear and hemoglobin management. Although there are many causes of anemia, inadequate nutrition is one of the primary ones. One of the common nutritional deficiencies found throughout the world, iron deficiency contributes to the high and ongoing prevalence of anemia. But inadequate and unbalanced diets may also be deficient in a number of other micronutrients, which can lead to micronutrient deficiencies and the development of anemia²⁴.

Interventions focused on nutrition that target the immediate causes of anemia. Increased consumption of foods that are naturally high in specific micronutrients with high bioavailability—that is, the degree to which the micronutrient is absorbed from the diet and available for the body's functions—and that have a high concentration of factors that improve absorption combined with a low concentration of factors that inhibit micronutrient absorption is the goal of nutrition education, counseling, and promotion. The most desirable and long-lasting intervention is increasing food diversity, but it may take some time to make dietary quality improvements and promote behavior change²⁵.

Pregnancy-related anemia is linked to a number of functional dysregulations, such as lowered immunity, heightened vulnerability to infections, low birth weight, and elevated rates of morbidity and mortality among mothers. Anaemia is thought to be a direct cause of 20% of maternal deaths in India and a contributing factor in another 20% of cases. As a result, as part of the continuing national iron folic acid supplementation programs and prenatal care, anaemia prevention and management have been given top priority²⁶.

The supplements consist of 500 µg of folic acid and 60 mg of elemental iron. Research conducted revealed that pregnant women's hemoglobin (Hb) response to supervised iron administration at doses of 60, 120, and 240 mg daily was comparable. Beyond 60 mg of iron, there was no corresponding increase in the amount of iron absorbed because higher iron doses increased hepcidin levels and decreased iron absorption²⁷. According to studies, iron and folate deficiencies were common in pregnant Indian women. To address these deficiencies, India started providing iron folic acid (IFA) supplements to all pregnant women²⁸. Micronutrient deficiencies can appear alone or in combination when sufficient nutrient provision, intake, or

Development of Anemic Prevention Form of Self Care Management for Increasing Haemoglobin (Hb) Levels at Pregnant Women SEEJPH Volume XXVII, 2025, ISSN: 2197-5248; Posted: 02-02-2025

absorption is not possible. In response, a number of strategies that place an emphasis on improving diet have been put into place at the community level or are specifically aimed at disadvantaged populations like expectant mothers, young children, and newborns²⁹.

Regarding the effect of iron deficiency anemia on fetal growth (including weight and height), it appears that careful follow-up of mothers from early pregnancy onwards, as well as timely diagnosis and treatment, are relatively easy and inexpensive; this is essential. In this study and others, it has been shown that high hemoglobin in the mother also causes a decrease in the baby's height and weight. Therefore, it is necessary to pay attention to high hemoglobin, typically less noticed, and eliminate possible influencing factors³⁰.

Conclusion:

The conclusion of this study is that the APOS form is able to prove a significant increase in hemoglobin levels in pregnant women. This improves the handling and prevention of anemia in pregnant women by implementing the theory of self-care. Recommendations for further research with the digitalization of the APOS form to make it easier to use in pregnant women. The APOS form has been proven effective in increasing Hb levels in pregnant women in Klaten district. This is proven by the significant increase in Hb levels in the intervention group after the intervention was implemented using the APOS form. There was a difference in Hemoglobin values in the control group and the intervention group. It is evident that there is a significant increase in haemoglobin levels in the intervention group after the intervention using APOS form. There was a difference in haemoglobin values in the control group and the intervention group.

Acknowledgement:

Praise be to God Almighty, who has given this research a smooth running. Thanks also to the promoters who have provided methodological truth, so that the academic weight of this paper is maintained.

Conflict of interest:

There is no conflict of interest in this research all members of the research team have the same interest in disseminating the results of this study to the public so that it can be utilised.

Source of funding:

This research was funded independently. the source of funding in the implementation of this research is the funds of the team members themselves, so it is free from any interests except for service to science.

References

- **1.** .Ministry of Health (2018) Basic Health Research Available at: https://kesmas.kemkes.go.id/assets/upload/dir_519d41d8cd98f00/files/Hasil-riskesdas-2018_1274.pdf.
- **2.** Noran M. Abu-Ouf (2015) 'The impact of maternal iron deficiency and iron deficiency anemia on child's health.', Journal Saudi Medical Journal, 36(2), pp. 146–149. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375689/. doi: 10.15537/smj.2015.2.10289.
- **3.** Ministry of Health R! (2020) Guidelines for Providing Blood Addition Tablets (TTD) for Pregnant Women. Available at: https://promkes.kemkes.go.id/pub/files/files99516TTD BUMIL OK2.pdf.
- **4.** Ministry of Health R! (2020) Guidelines for Providing Blood Addition Tablets (TTD) for Pregnant Women. Available at: https://promkes.kemkes.go.id/pub/files/files99516TTD BUMIL OK2.pdf.

- 5. Nurmasari, V. (2019) 'The Relationship between Antenatal Care Visit Regularity and Fe Tablet Consumption Compliance with the Incidence of Anaemia in Third Trimester Pregnant Women in Maron Probolinggo Sub-district'. Journal Amerta Nutrition, 3(1). Available at: https://e-journal.unair.ac.id/AMNT/article/view/10446. DOI: 10.2473/amnt.v3i1.2019.46-51
- **6.** Nurseptiana, E. (2023) 'Factors Associated with Adherence of Pregnant Women in Consuming Iron (Fe) Tablets in the Natam Health Centre Working Area, Southeast Aceh District', Journal of Healthcare Technology and Medicine, 9(1). Available at: https://jurnal.uui.ac.id/index.php/JHTM/article/download/2799/1453.
- **7.** Sulastri, Arina Maliya, E.Z.S. (2014) 'MODEL PENCEGAHAN ANEMIA PADA IBU HAMIL UNTUK MENURUNKAN PERDARAHAN POST PARTUM', Prosiding Seminar Nasional dan Internasional [Preprint]. Available at: https://jurnal.unimus.ac.id/index.php/psn12012010/article/viewFile/1231/1284.
- **8.** Sirikanok Klankhajhon, Kornkarn Pansuwan, Kanokon Klayjan, S.T. and N.N. (2021) 'Perspectives of Pregnant Women Regarding Iron Deficiency Anemia.', Jurnal Ners, 16(2). Available at: http://dx.doi.org/10.20473/jn.v16i2.27418.
- **9.** Solehati, T. et al. (2018) 'The Effect of Health Education on Knowledge of Early Detection and Prevention of Anaemia in Efforts to Reduce Aki in Posyandu Cadres', Jurnal Keperawatan Komprehensif (Comprehensive Nursing Journal), 4(1), pp. 7–12. Available at: https://doi.org/10.33755/jkk.v4i1.75.
- **10.** Tim, I.M. (2023) HANDBOOK ON PREVENTION OF ANAEMIA IN PREGNANT WOMEN AND ADOLESCENT GIRLS. Jakarta: Kementerian Kesehatan RI. Available at: https://perpustakaan.kemkes.go.id /books/buku-saku-pencegahan-anemia-pada-ibu-hamildan-remaja-putri/.
- **11.** Sulastri, Arina Maliya, E.Z.S. (2014) 'A MODEL FOR PREVENTING ANAEMIA IN PREGNANT WOMEN TO REDUCE POST PARTUM HAEMORRHAGE', Prosiding Seminar Nasional dan Internasional [Preprint]. Available at: https://jurnal.unimus.ac.id/index .php/ psn12012010 /article/ viewFile/1231/1284
- **12.** Sulastri, Adnes Syafiyah K, O.D.N. (2022) "Prevention of anaemia in pregnant women with "NUMIL".Jurnal Pendidikan Masyarakat dan Pengabdian, 2. Available at: http://ejurnal.pps.ung.ac.id/index.php/dikmas
- **13.** Farida, L.N. (2019) 'Management of Anaemia in Pregnant Women with Education and Fe Tablet Supplemen', Journal JIKO (Jurnal Ilmiah Keperawatan Orthopedi [Preprint]. Available at: https://ejournal.akperfatmawati.ac.id/index.php/JIKO/article/view/31.
- **14.** Darmawati, S.H.; (2019) 'PREVENTION OF ANAEMIA IN PREGNANT WOMEN AT KUTA BARO HEALTH CENTRE IN ACEH BESAR', Journal Ilmiah Mahasiswa JIM FKEP, 4(1). Available at: https://jim.usk.ac.id/FKep/article/viewFile/12078/4988
- **15.** Mardianti, M. (2018) . 'THE EFFECT OF PREGNANCY EXERCISES ON HAEMOGLOBIN LEVELS IN PREGNANT WOMEN IN THE WORKING AREA OF THE RENGASDENGKLOK KARAWANG HEALTH CENTRE', Jurnal Kebidanan Indonesia [Preprint]. Available at: https://jurnal.stikesmus.ac.id/index.php/JKebIn/article/view/130.
- **16.** Mera, Marhamah, A. (2022) . 'Analysis of Efforts to Prevent Anaemia among Pregnant Women during the COVID-19 Pandemic', Jurnal Ilmiah Obsgyn [Preprint]. Available at: https://stikes-nhm.e-journal.id/OBJ/index.
- **17.** Aurelia Rifkha Anyndie , Nur Hidayat, T.S. (2022) 'IBU SEHATI' A MEDIA EDUCATION FOR ANEMIA PREVENTION AMONG PREGNANT.', Repositiry Polkesyo. [Preprint]. Available at: http://eprints.poltekkesjogja.ac.id/id/eprint/8064.
- **18.** Yanuar Fajrul Falah, 1Shania Salsabilla Alamsyah, Ananda Arum Dwi Puspita Sari, Nur Ayu Sekar Arum Sari, Zulfikar Setyo Priyambudi, I.A. (2022) 'Anedoc APP: Reminder,

- Monitoring, and Education System for Pregnant Women's Blood Addition Tablet Consumption at Sangkrah Health Centre Surakarta City', Jurnal Warta LPM, 25(3), pp. 300–310. Available at: http://journals.ums.ac.id/index.php/warta
- **19.** Tim, I.M. (2023) HANDBOOK ON PREVENTION OF ANAEMIA IN PREGNANT WOMEN AND ADOLESCENT GIRLS. Jakarta: Kementerian Kesehatan RI. Available at: https://perpustakaan.kemkes.go.id /books/buku-saku-pencegahan-anemia-pada-ibu-hamil-dan-remaja-putri/
- **20.** Florence A. Kanu, PhD1; Heather C. Hamner, PhD2; Kelley S. Scanlon, PhD3; Andrea J. Sharma, PhD.2022. Anemia Among Pregnant Women Participating in the Special Supplemental Nutrition Program for Women, Infants, and Children United States, 2008–2018. https://www.cdc.gov/mmwr/volumes/71/wr/mm7125a1.htm
- **21.** Stephen G, Mgongo M, Hussein Hashim T et al (2018) Anaemia in pregnancy: prevalence, risk factors, and adverse perinatal outcomes in Northern Tanzania. Anemia 2018:1846280. https://doi.org/10.1155/2018/1846280
- **22.** Ullah A, Sohaib M, Saeed F, Iqbal S (2019) Prevalence of anemia and associated risk factors among pregnant women in Lahore, Pakistan. Women Health 59:660–671. https://doi.org/10.1080/03630242.2018.1544966
- **23.** Evelyn Araujo Costa & Jackline de Paula Ayres-Silva. 2023.Global profile of anemia during pregnancy versus country income overview: 19 years estimative (2000–2019) Annals and Hematology Journal. Volume 102, pages 2025–2031, (2023).
- **24.** World Health Organization. Global nutrition targets 2025: anaemia policy brief. apps.who.int/iris/bitstream/handle/10665/148556/WHO_NMH_NHD_14.4_eng.pdf?seque nce=1
- **25.** Girard AW, Olude O. Nutrition education and counselling provided during pregnancy: effects on maternal, neonatal and child health outcomes. Paediatric and Perinatal Epidemiology 2022;26 Suppl 1:191-204. [DOI: 10.1111/j.1365-3016.2012.01278.x
- **26.** Kalaivani K. Prevalence &consequences of anaemia in pregnancy. Indian J Med Res. 2019;130:627–33.
- **27.** Ramachandran P, Pramanik A, Kalaivani K. Can iron and folic acid-IFA and Ca &Vitamin D Supplementation in pregnancy be fitted into habitual pattern of three meals a day? Indian J Nutr Dietetics. 2019;56:341.
- **28.** Katharina da Silva Lopes, Yo Takemoto, Maria N Garcia-Casal, and Erika Ota.2018. Nutrition-specific interventions for preventing and controlling anaemia throughout the life cycle: an overview of systematic reviews. Cochrane Database Syst Rev. 2018 Aug; 2018(8): CD013092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513621/
- **29.** Susilowati, D. (2018) 'SELF MANAGEMENT IBU HAMIL DENGAN ANEMIA', Prosiding Seminar Nasional Keperawatan 2018 [Preprint]. Available at: http://eprints.undip.ac.id/69065/1/3.pdf.
- **30.** Abdulhussain Fadhil, A., Mohamad Ramadan, G., A. Al-Ajeeli, Z., M. Hameed, N., Dheaa Kadhim, W., S. Abed, A., et al. The Effect of Mothers' Hemoglobin Concentration During Pregnancy on the Weight and Height of Babies. J Obstet Gynecol Cancer Res. 2023; 8(4):374-81.