# Impact of Theraband Training on Selected Skill Variables of Volleyball players SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025

# Impact of Theraband Training on Selected Skill Variables of Volleyball players

# R.Ezhilarasi<sup>1</sup>, Dr.A.Palraj<sup>2</sup>&Dr.M.Suresh Kumar<sup>3</sup>

<sup>1</sup>Ph.D. Research Scholar, Department of Physical Education, Bishop Heber College, (Affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli, Tamilnadu, India.

<sup>2</sup>Director of Physical Education, Bishop Heber College, (Affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli, Tamilnadu, India.

<sup>3</sup>Director of Physical Education, Ganesar College of Arts & Science (Affiliated to Bharathidasan University, Tiruchirappalli), Ponnamaravathy, Pudukkottai, Tamilnadu, India.

#### **KEYWORDS**

### Theraband training, Tennis service, Jump service, Volleyball players.

# **ABSTRACT:**

The purpose of the study was to find out the impact of theraband training on selected skill variables of volleyball players. In this study, volleyball players from Bishop Heber College, Tiruchirappalli were tested using a pretest and posttest design, as well as a control group. A total of 30 female volleyball players were enlisted and divided into two groups: experiment (15) and control (15). The level of jump service and tennis service in both groups was assessed and documented using the Subjective rating. The players in the experiment group participated in 12-week training sessions, while the players in the control group did not get any treatment. ANCOVA with a post-hoc test was used. The study found that theraband training is a successful strategy for developing jump service and tennis service with volleyball players, with long-term impacts

#### 1. Introduction

Volleyball is defined as a ball game that places particular demands on performance factors [1]. Passing, serving, spiking, blocking, and serving the ball are all essential volleyball movements that call for the execution of numerous vertical or horizontal jumps as well as speed actions. For a volleyball player to succeed, they need to use both exceptional technique and the fundamental motor skills [2]. Physical strength and technical-tactical proficiency are prerequisites for those interested in the volleyball branch. The bounce, strength, and balance needed to elevate that level are necessary for every move made during a volleyball match or practice. Technical skills like finger passes and cuff passes are heavily utilised during this time. A volleyball player serves when they cross the back boundary line and pass the ball into the other team's court [3]. Service is the master technique which helps in deciding the winning probability. Playing ability, also known as aptitude in a particular field, is the innate or learnt capacity for a specific type of action [4]. Playing ability is the ability, capacity, or quality of being able to perform a task or activity, particularly one that requires physical, mental, or other strength. The ability to play is the quality of being appropriate for a particular activity. According to recent studies, supervised training can be a worthwhile, safe, and effective activity for volleyball players [5].

Therabands come in a variety of thicknesses and grades. These types of therabandsdevices are frequently used in fitness and therapeutic contexts, as well as for light strength training during a brief exercise regimen [6]. These bands can be used to simultaneously train one or more joints and never work against gravity. Because of their affordability [7], ease of use, adaptability, accessibility, safety, and portability, they have also grown in popularity and may thus be a viable substitute for resistance training. According to reports, elastic resistance bands can help volleyball players' physical development and are a useful tool for better performance [8,9].

### 2. Methodology

# **Selection of Subjects**

The purpose of the study was to find out the impact of theraband training on selected skill variables of volleyball players. In this study, volleyball players from Bishop Heber College, Tiruchirappalli were tested using a pretest and posttest design, as well as a control group. A total of 30 female volleyball players were enlisted and divided into two groups: experiment (15) and control (15). The level of jump service and tennis service in both groups was assessed and documented using the Subjective rating. The players in the experiment group participated in 12-week training sessions, while the players in the control group did not get any treatment.



# **Experimental Design**

The experimental group was divided into two subgroups after the initial screening for selection criteria, such as theraband training, and the control group, which was not subjected to any experimental training other than their ordinary everyday activities.

# **Statistical Analysis**

ANCOVA with a post-hoc test was used [10]. The threshold of significance 0.05 was chosen to examine the acquired results on variables and was deemed sufficient for the investigation.

#### 3. Results

Table 1.Descriptive Statistics of jump service

| Group      | Test               | Mean  | SD   |
|------------|--------------------|-------|------|
| Experiment | Pre Test           | 25.00 | 0.54 |
|            | Post Test          | 30.90 | 0.71 |
|            | Adjusted Post Test | 31.06 |      |
| Control    | Pre Test           | 25.55 | 0.82 |
|            | Post Test          | 26.10 | 0.58 |
|            | Adjusted Post Test | 26.03 |      |

It is obvious that the players in the experiment group improved their jump service much more than the players in the control group in the posttest.

Table 2.ANCOVA onjump service

|                       | Source of<br>Variance | Sum of Squares |    | Mean Square | F        |
|-----------------------|-----------------------|----------------|----|-------------|----------|
| Pre Test Mean         | BG                    | 3.43           | 1  | 3.43        | - 0.62   |
|                       | WG                    | 154.00         | 28 | 5.50        |          |
| Post Test Mean        | BG                    | 810.85         | 1  | 810.85      | - 92.54* |
|                       | WG                    | 245.33         | 28 | 8.76        |          |
| Adjusted Post<br>Mean | BG                    | 814.12         | 1  | 814.12      | 93.76*   |
|                       | WG                    | 234.44         | 27 | 8.68        |          |

There was a significant difference in jump service [F(1,27)=93.76, p=0.002] between the experimental and control groups.

Figure 1.Graphical representationson jump service

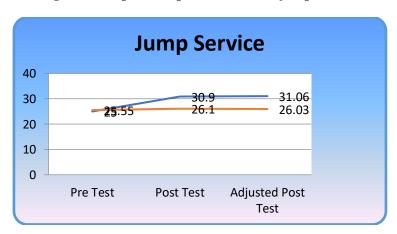





Table 3.Descriptive Statistics of tennis service

| Group      | Test               | Test Mean |      |
|------------|--------------------|-----------|------|
| Experiment | Pre Test           | 54.12     | 1.23 |
|            | Post Test          | 61.70     | 0.89 |
|            | Adjusted Post Test | 61.76     |      |
| Control    | Pre Test           | 53.44     | 0.45 |
|            | Post Test          | 55.78     | 0.97 |
|            | Adjusted Post Test | 55.72     |      |


It is obvious that the players in the experiment group improved their tennis serve much more than the players in the control group in the posttest.

Table 4.ANCOVA on tennis service

|                       | Source of<br>Variance | Sum of Squa | res df | Mean Square | F               |
|-----------------------|-----------------------|-------------|--------|-------------|-----------------|
| Pre Test Mean         | BG                    | 50.25       | 1      | 50.25       | _ 2.42          |
|                       | WG                    | 579.60      | 28     | 20.70       | - 2. <b>4</b> 2 |
| Post Test Mean        | BG                    | 1614.13     | 1      | 1614.13     | - 71.64*        |
|                       | WG                    | 630.80      | 28     | 22.52       |                 |
| Adjusted Post<br>Mean | BG                    | 1699.21     | 1      | 1699.21     | 77.02*          |
|                       | WG                    | 595.60      | 27     | 22.05       |                 |

There was a significant difference in tennis service [F(1,27)=77.02, p=0.002] between the experimental and control groups.

Figure 2.Graphical representations on tennis service





# 4. Discussion on Findings

In the case of skill performance variables, such as tennis and jump service The experimental group's pre- and post-test results were found to be significantly higher than those of the control group. This is made possible by consistent training, which can also cause volleyball players' skill performance variables to suddenly barb [11]. The results of this study clearly show that certain skill performance variables are significantly impacted. As a result, the previously established hypothesis was accepted in light of it [12,13].

# 5. Conclusion and Future Scope

The study found that theraband training is a successful strategy for developing jump service and tennis service with volleyball players, with long-term impacts. The control group did not experience any relative effects. Using cutting-edge coaching and training techniques can help players perform better, hone their skills, and advance the sport.

#### References

- 1. Agopyan, Ani., NurperOzbar. & Seda Nur Ozdemir (2018). Effects of 8-Week Thera-Band Training on Spike Speed, Jump Height and Speed of Upper Limb Performance of Young Female Volleyball Players. *International Journal of Applied Exercise Physiology*. 7,1.
- 2. Fabiano Lima (2016). Effects of resistance training using elastic tube or bands on muscle function and body composition in COPD subjects. *European Respiratory Journal*. 48.
- 3. Faigenbaum AD, Loud RL, O'Connell J, Glover S, O'Connell J, Westcott WL. (2001). Effects of different resistance training protocols on upper-body strength and endurance development in children. *J Strength Cond Res.* 15(4):459-65.
- 4. Gomez-Tomas, C., Chulvi-Medrano, I., Carrasco, J.J. & Alakhdar, Y. (2018). Effect of a 1-year elastic band resistance exercise program on cardiovascular risk profile in postmenopausal women. *Menopause*. 25(9):1004-1010.
- 5. Gregory, F. (2006). Volleyball performances. JOPESS. 8(3).
- 6. Hammami, R., Chaabene, H., Kharrat, F. *et al.* Acute effects of different balance exercise types on selected measures of physical fitness in youth female volleyball players. *BMC Sports Sci Med Rehabil* 13, 29 (2021).
- 7. Joy, J.M., Lowery, R.P., Oliveira, de Souza, E. & Wilson, J.M. (2016). Elastic Bands as a Component of Periodized Resistance Training. *J Strength Cond Res.* 30(8):2100-6.
- 8. Kumar, M.S. (2024). Resting Heart Rate Effects of Yogic Practices Involving Resistance and Plyometric Training on Teenage Volleyball Players, *International Journal of Advanced Trends in Engineering and Technology*, 9, 1, 15-19.
- 9. Lorenz D. S. (2014). Variable resistance training using elastic bands to enhance lower extremity strengthening. *International journal of sports physical therapy*, 9(3), 410–414.
- 10. Malik, Y. (2016). Analysisofplayingabilityandexplosivepowerandmuscular enduranceamongwomenvolleyballplayers. *International Journal of research and applied research*, 1, 1, 11-16.
- 11. McGinley, S.K., Armstrong, M.J., Boule, N.G. & Sigal, R.J. (2015). Effects of exercise training using resistance bands on glycaemic control and strength in type 2 diabetes mellitus: a meta-analysis of randomised controlled trials. *Acta Diabetol*. 52(2):221-30.
- 12. Oktay, C., Mehmet, S. S. & Evrim, C. (2017). The Effect of Resistance Band Training On The Maximum Force and Anaerobic Power of Boxers. *European Journal of Physical Education and Sport Science*, 3(8).
- 13. Patil, P. & Rao, S. (2011). Effects of Thera-Band® elastic resistance-assisted gait training in stroke patients: a pilot study. *Eur J Phys Rehabil Med*. 47(3):427-33.