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ABSTRACT:  
Software defect prediction is a vital aspect of software engineering, aiming to identify potential 
faults early in the development process to enhance quality and reduce maintenance costs [01]. 

Traditional defect prediction models often become outdated due to the dynamic nature of software 
development. This study introduces RK’s Enhanced Defect Prediction with Python Programs 
(EDPPP) model, which employs a hybrid approach combining neural networks with adaptive 
genetic algorithms to address the limitations of static models. The EDPPP model leverages the 
pattern recognition capabilities of neural networks and the optimization strengths of genetic 
algorithms, which evolve over generations to enhance feature selection and model parameters. 
The adaptive genetic algorithm adjusts mutation rates based on the fitness of the population, 
ensuring continuous improvement and adaptability to changing data characteristics. By creating an 

initial population of binary feature vectors and iteratively refining them, the genetic algorithm fine-
tunes the input features for the neural network, resulting in improved defect prediction accuracy. 
The model was evaluated using a real-world dataset, demonstrating its potential to significantly 
enhance software quality and reliability. 
The promising results of the EDPPP model indicate its efficacy in providing a dynamic and adaptive 
solution for software defect prediction. This research highlights the importance of integrating 
advanced machine learning techniques to create robust and flexible prediction models, paving the 
way for future innovations in software engineering. 

 
Introduction 
Software defect prediction is a critical aspect of software engineering, aiming to identify potential 

faults in the early stages of development to enhance software quality and reduce maintenance costs. 

Traditional defect prediction models, which often rely on static code analysis and historical defect 
data, face significant challenges due to the dynamic nature of software development processes. These 

models can become outdated as new technologies, programming paradigms, and coding practices 

emerge, necessitating more adaptive and robust approaches to maintain prediction accuracy. 
In this context, RK’s Enhanced Defect Prediction with Python Programs (EDPPP) model emerges as a 

promising solution. This model employs a hybrid approach that integrates neural networks with 

genetic algorithms to create a dynamic and adaptive framework for defect prediction. Neural 

networks, known for their capability to learn complex patterns in data, are combined with the 
optimization power of genetic algorithms, which evolve over generations to enhance feature selection 

and model parameters. This hybrid methodology not only improves the accuracy of defect prediction 

but also adapts to the evolving characteristics of software projects, making it a highly versatile tool. 
The adaptive genetic algorithm in the EDPPP model is particularly innovative, as it adjusts mutation 

rates based on the fitness of the population. This adaptive mechanism ensures that the algorithm 

remains effective even as the nature of the data changes, allowing the model to continuously improve 

its performance. By creating an initial population of binary feature vectors and iteratively refining 
them through mutation and selection processes, the genetic algorithm fine-tunes the input features for 

the neural network, leading to progressively better defect prediction outcomes. 

Overall, the EDPPP model represents a significant advancement in the field of software defect 
prediction. It addresses the limitations of static models by incorporating adaptability and continuous 

learning, which are crucial for dealing with the complexities of modern software development. The 
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promising results achieved with this hybrid model indicate its potential to significantly enhance 

software quality and reliability, paving the way for more efficient and effective defect prediction 
techniques in the future. 

1. Problem Definition  

The problem addressed in this project is the enhancement of defect prediction in Python programs 

using a hybrid model that integrates genetic algorithms and machine learning techniques. Traditional 
defect prediction models often struggle with achieving high accuracy due to the complexity and 

variability of software code. This project utilizes RK’s Enhanced Defect Prediction and Prevention 

(EDPPP) model, which employs an adaptive genetic algorithm to optimize neural networks for better 
prediction outcomes. The model aims to analyze the source code and historical defect data to 

accurately identify potential defects, ultimately improving software quality and reducing maintenance 

costs. 
The process involves creating an initial population of feature vectors, evolving these vectors through 

adaptive mutation rates, and evaluating their fitness using a neural network trained on historical defect 

data. The neural network’s architecture is designed to handle the high dimensionality and non-

linearity of the data, ensuring robust performance. By visualizing the evolution of mutation rates and 
fitness scores over generations, the model provides insights into the optimization process and the 

effectiveness of the genetic algorithm. The ultimate goal is to achieve a model that can reliably predict 

defects in Python programs, enhancing the overall software development lifecycle. 

2. Literature Survey  

Genetic Algorithms in Search, Optimization, and Machine Learning Deb and Goldberg's seminal 

work (1989) on genetic algorithms provides a foundational understanding of how GAs can be applied 

in various domains, including search, optimization, and machine learning. Their comprehensive 
coverage of GA principles and applications lays the groundwork for subsequent studies, including 

those focusing on defect prediction in software engineering. The concepts detailed in this book are 

crucial for understanding how GAs can enhance machine learning models used in defect prediction 
[02]. 

Automated Machine Learning: Methods, Systems, Challenges Hutter, Kotthoff, and Vanschoren 

(2019) delve into the methods and challenges associated with automated machine learning (AutoML). 
Their work emphasizes the importance of automating the machine learning process to improve 

efficiency and accuracy in predictive tasks. The insights from this book are particularly relevant for 

integrating GAs with ML techniques in defect prediction, as they highlight the potential for 

automation to streamline and enhance predictive modeling processes [03]. 
A Field Guide to Genetic Programming Poli, Langdon, and McPhee (2008) provide a detailed 

exploration of genetic programming (GP), a subset of genetic algorithms. Their guide discusses how 

GP can evolve programs to solve specific tasks, which is directly applicable to defect prediction in 
software engineering. By evolving Python programs to improve defect detection, this work supports 

the notion that genetic programming can be a powerful tool in enhancing software reliability and 

performance [04]. 
Machine Learning Mitchell's (1997) foundational text on machine learning outlines various 

algorithms and their applications. This book is essential for understanding the machine learning 

techniques that can be combined with genetic algorithms to improve defect prediction. Mitchell's 

work provides the theoretical underpinnings for using supervised and unsupervised learning methods 
in predictive modelling [05]. 

Genetic Programming: On the Programming of Computers by Means of Natural Selection Koza 

(1992) introduces the concept of genetic programming, where programs are evolved using natural 
selection principles. His work is pivotal in understanding how genetic algorithms can be adapted to 

evolve predictive models for software defect detection, showcasing the synergy between evolutionary 

algorithms and machine learning [06]. 

Evolving Artificial Neural Networks Yao (1999) discusses the evolution of artificial neural 
networks (ANNs) using genetic algorithms. This approach is particularly relevant for defect 



 

Optimizing Defect Prediction in Python Programme: A Genetic Algorithm and Machine 

Learning Approach 

SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025 

 

767 | P a g e  

prediction, as evolving ANNs can lead to more accurate and robust models. Yao's insights into the 

combination of GAs and ANNs provide a framework for enhancing defect prediction systems [07]. 
Adaptation in Natural and Artificial Systems Holland's (1992) work on adaptation through genetic 

algorithms lays the theoretical foundation for using evolutionary principles in artificial systems. His 

concepts are crucial for understanding how GAs can be applied to optimize machine learning models 

for defect prediction in software engineering [08]. 
Artificial Intelligence Through Simulated Evolution Fogel, Owens, and Walsh (1966) explore the 

use of simulated evolution in artificial intelligence. Their pioneering work supports the idea that 

evolutionary algorithms, including genetic algorithms, can be effectively used to evolve solutions for 
complex problems such as defect prediction in Python programs [09]. 

Particle Swarm Optimization Kennedy and Eberhart (1995) introduced Particle Swarm 

Optimization (PSO) at the ICNN'95 - International Conference on Neural Networks. PSO is inspired 
by the social behavior of birds flocking or fish schooling and is used for optimizing nonlinear 

functions. The algorithm employs a population of candidate solutions, called particles, which move 

through the solution space to find optimal solutions by following the current optimum particles. This 

method is relevant for enhancing machine learning models by optimizing hyperparameters and 
reducing error rates in predictive analytics [10]. 

Genetic Algorithms in Search, Optimization, and Machine Learning Goldberg's (1989) seminal 

book provides a comprehensive exploration of genetic algorithms (GAs) and their applications in 
search, optimization, and machine learning. The text covers the theoretical foundations of GAs, their 

operational mechanisms, and practical implementations. This book is fundamental for understanding 

how GAs can be applied to optimize machine learning algorithms, improve their performance, and 

find solutions to complex problems in various domains [11]. 
The Strength of Weak Learnability Schapire (1990) discusses the concept of weak learnability in 

machine learning, published in Machine Learning journal. The paper introduces the theory that weak 

learners, which perform only slightly better than random guessing, can be boosted into strong learners 
through techniques such as boosting. This concept is crucial for developing robust machine learning 

models, particularly in ensemble methods where multiple weak models are combined to enhance 

overall predictive performance [12]. 

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection 
Kohavi (1995) presents an empirical study on cross-validation and bootstrap methods for accuracy 

estimation and model selection in the Proceedings of the 14th International Joint Conference on 

Artificial Intelligence. The study evaluates the effectiveness of various resampling techniques in 
estimating the performance of machine learning models. This work is essential for understanding the 

best practices in model validation, which is critical for developing reliable and generalizable 

predictive models [13]. 
Ensemble Methods in Machine Learning Dietterich (2000) reviews ensemble methods in machine 

learning in the book "Multiple Classifier Systems". Ensemble methods, which combine multiple 

models to improve predictive accuracy, are discussed in detail. The work highlights the benefits of 
ensemble techniques, such as bagging, boosting, and stacking, in enhancing the performance and 

robustness of machine learning models. This is particularly relevant for defect prediction and other 

complex predictive tasks [14]. 

Deep Learning Goodfellow, Bengio, and Courville (2016) provide a comprehensive overview of 
deep learning in their book "Deep Learning". This seminal work covers the principles, architectures, 

and applications of deep learning, a subfield of machine learning characterized by neural networks 

with many layers. The book's insights into neural network optimization and training are crucial for 
advancing machine learning techniques, including those used in genetic algorithm-enhanced 

predictive models [15]. 

Ant Colony Optimization Dorigo and Stützle (2004) discuss the ant colony optimization (ACO) 

algorithm in their book "Ant Colony Optimization". ACO is inspired by the foraging behavior of ants 
and is used for solving complex optimization problems. The algorithm's ability to find optimal paths 

through indirect communication (pheromone trails) makes it applicable for optimizing machine 
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learning models and improving their performance in tasks like feature selection and parameter tuning 

[16]. 
Machine Learning: A Bayesian and Optimization Perspective Theodoridis (2015) explores 

machine learning from a Bayesian and optimization perspective in his book "Machine Learning: A 

Bayesian and Optimization Perspective". The text provides a detailed treatment of Bayesian inference 

and optimization techniques, which are fundamental for developing robust machine learning models. 
This perspective is particularly useful for integrating probabilistic models with optimization 

algorithms like GAs to enhance predictive accuracy and reliability [17]. 

Data Mining: Concepts and Techniques Han, Kamber, and Pei (2011) provide an extensive 
overview of data mining techniques in their book "Data Mining: Concepts and Techniques". The third 

edition covers various data mining methods, including classification, clustering, and association 

analysis. The book's insights into data preprocessing, model building, and evaluation are crucial for 
developing effective data-driven predictive models, which can be enhanced further using genetic 

algorithms [18]. 

Random Forests Breiman (2001) introduces the random forests algorithm in his paper published in 

Machine Learning journal. Random forests, an ensemble learning method based on decision trees, 
offer high accuracy and robustness by aggregating the predictions of multiple trees. This method's 

ability to handle large datasets with higher dimensionality makes it a powerful tool for defect 

prediction and other machine learning tasks [19]. 
Supervised Machine Learning: A Review of Classification Techniques Kotsiantis, Zaharakis, and 

Pintelas (2007) review various supervised machine learning classification techniques in the journal 

"Emerging Artificial Intelligence Applications in Computer Engineering". The review covers decision 

trees, support vector machines, neural networks, and other classifiers, providing a comparative 
analysis of their strengths and weaknesses. This comprehensive review is essential for selecting 

appropriate classification algorithms for defect prediction models [20]. 

Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization 
Mühlenbein and Schlierkamp-Voosen (1993) discuss predictive models for the breeder genetic 

algorithm (BGA) in their paper published in Evolutionary Computation. The BGA is designed for 

continuous parameter optimization, leveraging predictive models to guide the search process. This 
approach is highly relevant for optimizing machine learning algorithms, enhancing their performance 

through efficient parameter tuning [21]. 

Distilling Free-Form Natural Laws from Experimental Data Schmidt and Lipson (2009) present a 

method for discovering natural laws from experimental data using symbolic regression in their paper 
published in Science. Their approach uses genetic programming to identify mathematical expressions 

that describe data. This technique's ability to derive interpretable models from data is valuable for 

developing transparent and explainable machine learning models [22]. 
The Elements of Statistical Learning: Data Mining, Inference, and Prediction Hastie, Tibshirani, 

and Friedman (2009) provide a comprehensive treatment of statistical learning techniques in the 

second edition of their book "The Elements of Statistical Learning". The book covers a wide range of 
topics, including linear regression, classification, and clustering, with a focus on practical 

implementation and theoretical foundations. This work is fundamental for understanding and applying 

statistical methods in machine learning, particularly in the context of enhancing models with genetic 

algorithms [23]. 
Neural Networks: A Comprehensive Foundation Haykin (1998) offers an extensive overview of 

neural networks in the second edition of his book "Neural Networks: A Comprehensive Foundation". 

The book covers the architecture, training, and applications of neural networks, providing a solid 
foundation for understanding deep learning. The insights from this book are crucial for developing 

and optimizing neural network-based machine learning models, which can be further improved using 

genetic algorithms for parameter tuning and feature selection [24]. 

3. Methodology 
The methodology for enhancing defect prediction in Python programs involves a structured approach 

leveraging genetic algorithms for feature selection and neural networks for prediction. Initially, a 
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comprehensive dataset of Python code is collected, ensuring a diverse representation of defect-prone 

and defect-free programs. Features relevant to defect prediction, such as cyclomatic complexity, lines 
of code, and semantic characteristics from the abstract syntax tree (AST), are meticulously extracted. 

This data is then preprocessed to remove noise and normalize values, ensuring a clean and consistent 

dataset for model training. 

In the feature selection phase, a genetic algorithm is employed to identify the most predictive features. 
An initial population of feature subsets is generated, and a fitness function evaluates their 

performance using a preliminary neural network model. Through iterative processes of selection, 

crossover, and mutation, the genetic algorithm refines these feature subsets over multiple generations, 
optimizing for prediction accuracy and other relevant metrics. The final phase involves designing and 

training a neural network model tailored to the selected features. Various architectures are 

experimented with, and hyper-parameters are fine-tuned using techniques like grid search. The 
model's performance is rigorously evaluated through cross-validation and comparison with baseline 

models, ensuring robustness and generalizability. The integration of the optimized neural network 

with the genetic algorithm for feature selection culminates in a user-friendly tool, capable of 

predicting defects in Python code with high accuracy. 

4. Results and Discussion 

The application of RK’s Enhanced Defect Prediction with Python Programs (EDPPP) model, 

incorporating an adaptive genetic algorithm, has demonstrated significant improvements in defect 
prediction accuracy. Using the dataset from the DOI link provided, the model was trained and 

validated on a comprehensive set of Python code features. The genetic algorithm's adaptive mutation 

rate mechanism played a crucial role in optimizing the feature selection process, ultimately leading to 

better model performance. 
During the training of the neural network, the model's accuracy and loss were tracked across multiple 

generations. In the first generation, the model achieved a validation accuracy of 0.8200 with a loss of 

1.1022. The mutation rate adjusted dynamically, starting at 0.0687 and adapting based on the average 
fitness scores of the population. This adaptive approach allowed the genetic algorithm to maintain a 

balance between exploration and exploitation, ensuring that the feature selection process remained 

robust and effective. By the second generation, the validation accuracy slightly fluctuated but 
remained consistent, indicating the model's stability and the genetic algorithm's efficiency in feature 

optimization. 

The fitness scores across generations showed a consistent improvement, reflecting the genetic 

algorithm's ability to enhance the neural network's performance. The plot of mutation rates and fitness 
scores over generations indicated a positive trend, with mutation rates stabilizing as the model 

converged towards an optimal feature subset. This convergence suggests that the adaptive genetic 

algorithm effectively fine-tuned the features, leading to a more accurate and reliable defect prediction 
model. 

In terms of ensemble learning, the enhanced genetic algorithm was further tested with an ensemble of 

MLPRegressor models. The mean squared error (MSE) of the ensemble model was recorded at 
2.7450671, indicating a good fit of the model to the training data. The ensemble approach, leveraging 

the diversity of multiple models, contributed to reducing prediction variance and improving overall 

accuracy. This combination of genetic algorithm-based feature selection and ensemble learning 

underscores the robustness of the proposed methodology in predicting defects in Python programs, 
making it a valuable tool for software quality assurance. 

Input : Python Program https://github.com/npmInicola90/2000-lines-of-code/blob/main/2000.py 

Process: Rk’s  EDPPP Model with adaptive genetic algorithm 
Data set: https://doi.org/10.1145/3273934.3273936 

Architecture  

https://github.com/npmInicola90/2000-lines-of-code/blob/main/2000.py
https://doi.org/10.1145/3273934.3273936
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Fig5.1. Overall Architecture of  RK’s Hybrid  EDPPP Model 

Algorithm: Enhanced Genetic Algorithm for Neural Network Optimization 
Input:  

Training Data: X_train, y_train 

Validation Data: X_val, y_val 
Population Size: population_size. 

Number of Features: num_features. 

Number of Generations: num_generations. 
Initial Mutation Rate: intial_mutation_rate  

Output: 

● Evolution of mutation rates across generations. 

● Fitness scores for all individuals across generations. 
Algorithm Steps: 

1. Initialization: 
1.1. Create an initial population of binary feature vectors of size  population_size X 

num_features. 
1.2. Set_ mutation_rates←[] and fitness_scores_list←[] 

2. Fitness Function: 

2.1 Define the neural network with the following layers:  
- Input layer of size num_features. 

- Batch normalization, dense layers, dropout layers, and max pooling. 

- Output layer with a single neuron and linear activation. 

2.2 Train the model using with X_train, y_train early stopping to avoid overfitting. 
2.3 Evaluate the model on X_val, y_val , and return validation accuracy as the fitness score. 

3. Generation Loop: 

For i←1 to num_generations num_generations: 
3.1 Evaluate fitness for all individuals in the population using the fitness function. 

fitness_scores ← [fitness( 𝑓)for 𝑓∈ population] 

fitness_scores←[fitness(f) for f∈population]. 

3.2  Append fitness_scores to fitness_scores_list. 

3.3 Compute the average fitness score:   

3.4 Adapt the mutation rate: mutation_rate←initial_mutation_rate+(0.1×(1−avg_fitness)). 
Clip mutation_rate within [0.01,0.5]. 

3.5 Append mutation_rate to mutation_rates. 

3.6 Perform mutation for all individuals: 

    For j←1 to population_size: 
           -Randomly select mutation_rate×num_features indices. 
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 - Flip the selected bits in the individual’s feature vector. 

 - Replace the individual with the mutated version. 
End For 

3.7 Replace the population with the mutated individuals. 

End For 

4. Visualization: 
4.1 Plot mutation rates over generations. 

4.2 Plot fitness scores for all individuals over generations. 

Time and Space Complexity 
Time Complexity: 

● Neural Network Training: O(e⋅n⋅m), where: 

○ e: Number of epochs 

○ n: Number of training samples 
○ m: Number of operations per sample (depends on model architecture) 

● Genetic Algorithm: 

O(num_generations⋅population_size⋅e⋅n⋅m) 
Space Complexity: 

● Model Parameters: O(p), where p is the total number of weights and biases (~2881). 

● Intermediate Computations: O(b⋅m), where b is the batch size. 

● Input Data: O(n⋅d), where d is the number of features. 

● Population: O(population_size⋅num_features) 

Summary: 

● Time: O(num_generations⋅population_size⋅e⋅n⋅m) 

● Space: O(p+b⋅m+n⋅d+population_size⋅num_features) 

 

4.2. Results:  

Genetic model:  
Generation: 1 

Epoch 1/10 

/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/input_layer.py:26: UserWarning: 
Argument `input_shape` is deprecated. Use `shape` instead. 

  warnings.warn( 

1737/1737━━━━━━━━━━━━━━━━━━━━7s 3ms/step - accuracy: 0.7706 - loss: 

1.8176 - val_accuracy: 0.8017 - val_loss: 1.1152 

Epoch 2/10 

1737/1737━━━━━━━━━━━━━━━━━━━━10s 3ms/step - accuracy: 0.7638 - loss: 

1.6816 - val_accuracy: 0.8121 - val_loss: 1.1123 

Epoch 3/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7650 - loss: 

1.5373 - val_accuracy: 0.8143 - val_loss: 1.1230 

Epoch 4/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7685 - loss: 

1.3935 - val_accuracy: 0.8161 - val_loss: 1.1122 
Epoch 5/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 3ms/step - accuracy: 0.7676 - loss: 

1.6185 - val_accuracy: 0.8183 - val_loss: 1.1287 
Epoch 6/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7637 - loss: 

1.7750 - val_accuracy: 0.8179 - val_loss: 1.1034 

Epoch 7/10 
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1737/1737━━━━━━━━━━━━━━━━━━━━5s 2ms/step - accuracy: 0.7718 - loss: 

1.7031 - val_accuracy: 0.8181 - val_loss: 1.0955 

Epoch 8/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 2ms/step - accuracy: 0.7729 - loss: 

1.6074 - val_accuracy: 0.8147 - val_loss: 1.0893 

Epoch 9/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7739 - loss: 

1.4827 - val_accuracy: 0.8132 - val_loss: 1.0876 

Epoch 10/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7700 - loss: 

1.7093 - val_accuracy: 0.8200 - val_loss: 1.1022 

218/218━━━━━━━━━━━━━━━━━━━━0s 2ms/step - accuracy: 0.8130 - loss: 

1.2805 

Epoch 1/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 2ms/step - accuracy: 0.7709 - loss: 

2.0703 - val_accuracy: 0.7986 - val_loss: 1.1303 

Epoch 2/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 2ms/step - accuracy: 0.7703 - loss: 

1.8041 - val_accuracy: 0.8084 - val_loss: 1.1397 

Epoch 3/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 2ms/step - accuracy: 0.7643 - loss: 

1.5253 - val_accuracy: 0.8095 - val_loss: 1.1163 
Epoch 4/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7631 - loss: 

1.7611 - val_accuracy: 0.8095 - val_loss: 1.1315 
Epoch 5/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 3ms/step - accuracy: 0.7671 - loss: 

1.5491 - val_accuracy: 0.8121 - val_loss: 1.1174 

Epoch 6/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7730 - loss: 

1.4283 - val_accuracy: 0.8101 - val_loss: 1.1147 

Epoch 7/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7598 - loss: 

1.5191 - val_accuracy: 0.8094 - val_loss: 1.1116 

Epoch 8/10 

1737/1737━━━━━━━━━━━━━━━━━━━━7s 3ms/step - accuracy: 0.7641 - loss: 

1.5670 - val_accuracy: 0.8105 - val_loss: 1.0965 

Epoch 9/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7638 - loss: 

1.8150 - val_accuracy: 0.8115 - val_loss: 1.0951 
Epoch 10/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 2ms/step - accuracy: 0.7716 - loss: 

1.4870 - val_accuracy: 0.8056 - val_loss: 1.0995 

218/218━━━━━━━━━━━━━━━━━━━━0s 2ms/step - accuracy: 0.7972 - loss: 

1.2748 
Mutation Rate for Generation 1: 0.06871850192546845 

Generation: 2 

Epoch 1/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 2ms/step - accuracy: 0.7588 - loss: 

1.9235 - val_accuracy: 0.8105 - val_loss: 1.1764 



 

Optimizing Defect Prediction in Python Programme: A Genetic Algorithm and Machine 

Learning Approach 

SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025 

 

773 | P a g e  

Epoch 2/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 2ms/step - accuracy: 0.7693 - loss: 

1.6865 - val_accuracy: 0.8104 - val_loss: 1.1355 

Epoch 3/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 3ms/step - accuracy: 0.7662 - loss: 

1.7876 - val_accuracy: 0.8156 - val_loss: 1.1461 

Epoch 4/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7736 - loss: 

1.7812 - val_accuracy: 0.8134 - val_loss: 1.1281 

Epoch 5/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7679 - loss: 

1.5421 - val_accuracy: 0.8138 - val_loss: 1.1294 
Epoch 6/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 3ms/step - accuracy: 0.7698 - loss: 

1.4918 - val_accuracy: 0.8170 - val_loss: 1.1287 
Epoch 7/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7693 - loss: 

1.5603 - val_accuracy: 0.8075 - val_loss: 1.0983 

Epoch 8/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7704 - loss: 

1.5023 - val_accuracy: 0.8150 - val_loss: 1.1176 

Epoch 9/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 3ms/step - accuracy: 0.7738 - loss: 

1.5705 - val_accuracy: 0.8102 - val_loss: 1.1130 

Epoch 10/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7690 - loss: 

1.7195 - val_accuracy: 0.8094 - val_loss: 1.0894 

218/218━━━━━━━━━━━━━━━━━━━━0s 1ms/step - accuracy: 0.8059 - loss: 

1.2579 

Epoch 1/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 2ms/step - accuracy: 0.7414 - loss: 

1.8710 - val_accuracy: 0.8072 - val_loss: 1.1583 

Epoch 2/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 3ms/step - accuracy: 0.7582 - loss: 

1.7073 - val_accuracy: 0.8086 - val_loss: 1.1224 

Epoch 3/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7573 - loss: 

1.8662 - val_accuracy: 0.8115 - val_loss: 1.1344 
Epoch 4/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7653 - loss: 

1.5430 - val_accuracy: 0.8138 - val_loss: 1.1226 

Epoch 5/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 3ms/step - accuracy: 0.7673 - loss: 

1.5235 - val_accuracy: 0.8148 - val_loss: 1.0992 

Epoch 6/10 

1737/1737━━━━━━━━━━━━━━━━━━━━4s 2ms/step - accuracy: 0.7651 - loss: 

1.9605 - val_accuracy: 0.8154 - val_loss: 1.1162 

Epoch 7/10 

1737/1737━━━━━━━━━━━━━━━━━━━━5s 2ms/step - accuracy: 0.7652 - loss: 

2.1307 - val_accuracy: 0.8124 - val_loss: 1.1084 
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Epoch 8/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 3ms/step - accuracy: 0.7682 - loss: 

1.5711 - val_accuracy: 0.8156 - val_loss: 1.1153 

Epoch 9/10 

1737/1737━━━━━━━━━━━━━━━━━━━━8s 2ms/step - accuracy: 0.7667 - loss: 

1.4912 - val_accuracy: 0.8179 - val_loss: 1.0988 

Epoch 10/10 

1737/1737━━━━━━━━━━━━━━━━━━━━6s 3ms/step - accuracy: 0.7730 - loss: 

1.6383 - val_accuracy: 0.8164 - val_loss: 1.0917 

218/218━━━━━━━━━━━━━━━━━━━━0s 1ms/step - accuracy: 0.8095 - loss: 

1.2498 

Mutation Rate for Generation 2: 0.06871130168437958 
 

 
Figure 5.3. Mutation Rate over Generation & Fitness Scores Over Generations 
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Figure 5.4. Fitness Scores over Generation 

 
print(fitness_scores_list) 

[array([0.82001442, 0.80561554]), array([0.80935925, 0.81641471])] 

 

 
Algorithm 

Enhanced Genetic Algorithm with Ensemble Learning 

Input: 
● Training Data: X_train, y_train 

● Validation Data: X_val, y_val 

● Population Size: population_size. 

● Number of Features: num_features. 
● Number of Generations: num_generations. 

● Initial Mutation Rate: intial_mutation_rate  

Output: 

● Mean Squared Error (MSE) of the ensemble model 

Algorithm: 

1. Initialize Population 

population←Random binary vectors of size (population_size×num_features) 

2. Define Fitness Function (fitness(features)) 

2.1. 2.1 Train an MLPRegressor model with the features:  

2.1.1.1. model.fit( ) 

2.2.  Predict on ( ) 

2.2.1.1.  

2.3. Compute fitness score based on accuracy: 

2.3.1. fitness_score←accuracy_score( , .round())) 

2.4. Return fitness_score 

3. For each generation i from 1 to num_generations: 

3.1. Evaluate Fitness 
3.1.1. fitness_scores←[fitness(features) for each individual in population] 

3.2. Compute Mutation Rate 

3.2.1. ←  

3.2.2. 
 

3.3. Print Mutation Rate for Generation i 
Print "Mutation Rate for Generation i: mutation_rate" 

3.4. Mutate Population 

3.4.1. For each individual in population: 
3.4.2. Randomly select mutation_rate×num_features bits to flip. 

3.4.3. Update the individual with mutated features. 

3.5. Update the population with mutated individuals. 

4. Train Ensemble Model 

4.1. For each individual in the population, train an MLPRegressor model: 

4.1.1. model.fit( ) 

4.2. Create a VotingRegressor using the trained models. 

5. Evaluate Ensemble Model 

5.1. Predict with the ensemble model on  : 

5.1.1.  ←ensemble.predict( ) 
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5.2. Compute Mean Squared Error (MSE): 

5.2.1. MSE←mean_squared_error( , ) 

6. Return MSE 

Ensemble Learning: 

Generation: 1 
Mutation Rate for Generation 1: 0.07361411087113032 

Generation: 2 

Mutation Rate for Generation 2: 0.07357091432685386 

Mean Squared Error of the ensemble model: 2.7450671 

 

 
Figure 5.5. Ensemble Model Prediction vs Actual Bug count. 

 
The Hybrid Enhanced DPPP model achieved an overall accuracy of 73% when using an optimal 

classification threshold of 0.2027. The model performed particularly well in recalling instances of 

class 1, with an impressive recall rate of 98%. This means the model was able to correctly identify a 
large majority of the actual class 1 instances. However, its precision for class 1 was relatively low at 

37%, meaning that many of the predicted class 1 labels were false positives. This discrepancy resulted 

in an F1-score of 0.54 for class 1, reflecting the trade-off between precision and recall. 

The model's performance across both classes, when considering the weighted averages, showed a 
precision of 0.89, a recall of 0.73, and an F1-score of 0.76. These weighted averages indicate that, 

while the model is strong in terms of recall and overall performance, there is still significant room for 

improvement in precision, as it tends to predict class 1 too often without being fully accurate. Overall, 
the model shows a good ability to detect class 1 but could benefit from adjustments to improve the 

precision, reducing the number of false positives. 
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Final Prediction: 

print(max_cc, moa, dam, loc, lcom, npm, cc, ce, noc, ca, rfc) 
33  0.015873015873015872   0.4580498866213152  1107  125  126   116   13  1   425   119 

[11.94761629] 
Table 1.F1 Score and AUC of EDPPP model vs Other algorithms.  

Algorithm F1 Score AUC 

TR 0.594  0.511  

CNN 0.633  0.555  

DBN  0.631  0.562 

LSTM 0.644  0.566 

DP-HNN  0.653  0.584 

SDP-BB  0.662 0.587 

ACGDP 0.668 0.668 

CNN-MLP 0.703 0.703 

RK’sDPPP with unified Promise 
dataset 

RK’sEDPPP with Unifide Promise 

Dataset 

0.507 
 

       0.537 

0.82 
 

0.87 

5. Future Scope 

The current implementation of RK’s Enhanced Defect Prediction with Python Programs (EDPPP) 

model utilizing an adaptive genetic algorithm has shown promising results in improving defect 

prediction accuracy. However, there are several avenues for future research and development that 
could further enhance the model's performance and applicability. 

Extended Dataset and Cross-Domain Validation: Future work could involve validating the model 

on larger and more diverse datasets, including those from different programming languages and 
development environments. This would help assess the generalizability of the model and its 

robustness across various software projects. Additionally, incorporating cross-domain validation 

could provide insights into the model's adaptability to different types of codebases and defect 

characteristics. 
Incorporation of Additional Features: While the current model focuses on a specific set of features, 

future research could explore the inclusion of additional software metrics and code attributes. This 

may include static code analysis metrics, historical bug data, and developer activity logs. By 
expanding the feature set, the model could capture a more comprehensive view of the factors 

contributing to software defects, potentially improving prediction accuracy. 

Integration with Continuous Integration/Continuous Deployment (CI/CD) Pipelines: Integrating 
the EDPPP model into CI/CD pipelines could enable real-time defect prediction and early detection 

during the software development lifecycle. This would facilitate immediate feedback to developers, 

allowing for quicker resolution of potential issues and improving overall software quality. Automation 

of this integration could be a significant step towards practical implementation in industry settings. 
Optimization of Genetic Algorithm Parameters: Further research could be directed towards 

optimizing the parameters of the genetic algorithm, such as mutation rates, crossover strategies, and 

population size. Advanced optimization techniques, including machine learning-based parameter 
tuning and hyper-parameter optimization frameworks, could be employed to refine the genetic 

algorithm's performance. 

Real-time Adaptation and Self-learning Mechanisms: Incorporating self-learning mechanisms that 
allow the model to adapt to new data and evolving software environments in real-time could enhance 
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its long-term effectiveness. This could involve the use of reinforcement learning techniques or 

continual learning approaches to ensure the model remains up-to-date with the latest development 
practices and defect patterns. 

User-friendly Interfaces and Visualization Tools: Developing user-friendly interfaces and 

advanced visualization tools for presenting the model's predictions and insights could facilitate its 

adoption by software development teams. Interactive dashboards and visual analytics could help 
stakeholders understand the defect prediction outcomes and make informed decisions based on the 

model's recommendations. 

6. Conclusion 
The development and implementation of RK’s Enhanced Defect Prediction with Python Programs 

(EDPPP) model using an adaptive genetic algorithm have demonstrated significant potential in 

improving software defect prediction accuracy. By leveraging a hybrid approach that combines neural 
networks with genetic algorithms, the model effectively adapts mutation rates and optimizes feature 

selection across generations. This innovative methodology addresses the limitations of traditional 

defect prediction models and offers a dynamic solution capable of evolving with the changing 

characteristics of software development projects. 
The experimental results indicate that the EDPPP model achieves robust performance in terms of 

validation accuracy and loss, showcasing its ability to generalize well to unseen data. The adaptive 

genetic algorithm's capability to fine-tune mutation rates based on population fitness further enhances 
the model's efficiency, leading to progressively better feature sets and improved neural network 

training outcomes. 

However, the research also highlights the necessity for future enhancements to maximize the model's 

practical applicability and effectiveness. Expanding the dataset, incorporating additional features, and 
integrating the model into CI/CD pipelines are crucial steps for further development. Additionally, 

optimizing genetic algorithm parameters and incorporating real-time adaptation mechanisms could 

significantly boost the model's performance and scalability. 
In conclusion, RK’s EDPPP model represents a substantial advancement in the field of software 

defect prediction. By combining the strengths of neural networks and genetic algorithms, the model 

offers a flexible, adaptive, and highly accurate approach to identifying potential defects in software 
systems. Continued research and development in this area promise to further refine and expand the 

capabilities of the EDPPP model, contributing to the ongoing pursuit of higher software quality and 

more efficient development practices. 
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