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software defect Software defect prediction is a vital aspect of software engineering, aiming to identify potential
prediction, adaptive ~ faults early in the development process to enhance quality and reduce maintenance costs [01].
genetic algorithm, Traditional defect prediction models often become outdated due to the dynamic nature of software
neural networks, development. This study introduces RK’s Enhanced Defect Prediction with Python Programs
feature selection, (EDPPP) model, which employs a hybrid approach combining neural networks with adaptive
software quality. genetic algorithms to address the limitations of static models. The EDPPP model leverages the

pattern recognition capabilities of neural networks and the optimization strengths of genetic
algorithms, which evolve over generations to enhance feature selection and model parameters.

The adaptive genetic algorithm adjusts mutation rates based on the fitness of the population,
ensuring continuous improvement and adaptability to changing data characteristics. By creating an
initial population of binary feature vectors and iteratively refining them, the genetic algorithm fine-
tunes the input features for the neural network, resulting in improved defect prediction accuracy.
The model was evaluated using a real-world dataset, demonstrating its potential to significantly
enhance software quality and reliability.

The promising results of the EDPPP model indicate its efficacy in providing a dynamic and adaptive
solution for software defect prediction. This research highlights the importance of integrating
advanced machine learning techniques to create robust and flexible prediction models, paving the
way for future innovations in software engineering.

Introduction

Software defect prediction is a critical aspect of software engineering, aiming to identify potential
faults in the early stages of development to enhance software quality and reduce maintenance costs.
Traditional defect prediction models, which often rely on static code analysis and historical defect
data, face significant challenges due to the dynamic nature of software development processes. These
models can become outdated as new technologies, programming paradigms, and coding practices
emerge, necessitating more adaptive and robust approaches to maintain prediction accuracy.

In this context, RK’s Enhanced Defect Prediction with Python Programs (EDPPP) model emerges as a
promising solution. This model employs a hybrid approach that integrates neural networks with
genetic algorithms to create a dynamic and adaptive framework for defect prediction. Neural
networks, known for their capability to learn complex patterns in data, are combined with the
optimization power of genetic algorithms, which evolve over generations to enhance feature selection
and model parameters. This hybrid methodology not only improves the accuracy of defect prediction
but also adapts to the evolving characteristics of software projects, making it a highly versatile tool.
The adaptive genetic algorithm in the EDPPP model is particularly innovative, as it adjusts mutation
rates based on the fitness of the population. This adaptive mechanism ensures that the algorithm
remains effective even as the nature of the data changes, allowing the model to continuously improve
its performance. By creating an initial population of binary feature vectors and iteratively refining
them through mutation and selection processes, the genetic algorithm fine-tunes the input features for
the neural network, leading to progressively better defect prediction outcomes.

Overall, the EDPPP model represents a significant advancement in the field of software defect
prediction. It addresses the limitations of static models by incorporating adaptability and continuous
learning, which are crucial for dealing with the complexities of modern software development. The
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promising results achieved with this hybrid model indicate its potential to significantly enhance
software quality and reliability, paving the way for more efficient and effective defect prediction
techniques in the future.

1. Problem Definition
The problem addressed in this project is the enhancement of defect prediction in Python programs
using a hybrid model that integrates genetic algorithms and machine learning techniques. Traditional
defect prediction models often struggle with achieving high accuracy due to the complexity and
variability of software code. This project utilizes RK’s Enhanced Defect Prediction and Prevention
(EDPPP) model, which employs an adaptive genetic algorithm to optimize neural networks for better
prediction outcomes. The model aims to analyze the source code and historical defect data to
accurately identify potential defects, ultimately improving software quality and reducing maintenance
Costs.
The process involves creating an initial population of feature vectors, evolving these vectors through
adaptive mutation rates, and evaluating their fitness using a neural network trained on historical defect
data. The neural network’s architecture is designed to handle the high dimensionality and non-
linearity of the data, ensuring robust performance. By visualizing the evolution of mutation rates and
fitness scores over generations, the model provides insights into the optimization process and the
effectiveness of the genetic algorithm. The ultimate goal is to achieve a model that can reliably predict
defects in Python programs, enhancing the overall software development lifecycle.

2. Literature Survey
Genetic Algorithms in Search, Optimization, and Machine Learning Deb and Goldberg's seminal
work (1989) on genetic algorithms provides a foundational understanding of how GAs can be applied
in various domains, including search, optimization, and machine learning. Their comprehensive
coverage of GA principles and applications lays the groundwork for subsequent studies, including
those focusing on defect prediction in software engineering. The concepts detailed in this book are
crucial for understanding how GAs can enhance machine learning models used in defect prediction
[02].
Automated Machine Learning: Methods, Systems, Challenges Hutter, Kotthoff, and Vanschoren
(2019) delve into the methods and challenges associated with automated machine learning (AutoML).
Their work emphasizes the importance of automating the machine learning process to improve
efficiency and accuracy in predictive tasks. The insights from this book are particularly relevant for
integrating GAs with ML techniques in defect prediction, as they highlight the potential for
automation to streamline and enhance predictive modeling processes [03].
A Field Guide to Genetic Programming Poli, Langdon, and McPhee (2008) provide a detailed
exploration of genetic programming (GP), a subset of genetic algorithms. Their guide discusses how
GP can evolve programs to solve specific tasks, which is directly applicable to defect prediction in
software engineering. By evolving Python programs to improve defect detection, this work supports
the notion that genetic programming can be a powerful tool in enhancing software reliability and
performance [04].
Machine Learning Mitchell's (1997) foundational text on machine learning outlines various
algorithms and their applications. This book is essential for understanding the machine learning
techniques that can be combined with genetic algorithms to improve defect prediction. Mitchell's
work provides the theoretical underpinnings for using supervised and unsupervised learning methods
in predictive modelling [05].
Genetic Programming: On the Programming of Computers by Means of Natural Selection Koza
(1992) introduces the concept of genetic programming, where programs are evolved using natural
selection principles. His work is pivotal in understanding how genetic algorithms can be adapted to
evolve predictive models for software defect detection, showcasing the synergy between evolutionary
algorithms and machine learning [06].
Evolving Artificial Neural Networks Yao (1999) discusses the evolution of artificial neural
networks (ANNSs) using genetic algorithms. This approach is particularly relevant for defect
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prediction, as evolving ANNs can lead to more accurate and robust models. Yao's insights into the
combination of GAs and ANNs provide a framework for enhancing defect prediction systems [07].
Adaptation in Natural and Artificial Systems Holland's (1992) work on adaptation through genetic
algorithms lays the theoretical foundation for using evolutionary principles in artificial systems. His
concepts are crucial for understanding how GAs can be applied to optimize machine learning models
for defect prediction in software engineering [08].

Avrtificial Intelligence Through Simulated Evolution Fogel, Owens, and Walsh (1966) explore the
use of simulated evolution in artificial intelligence. Their pioneering work supports the idea that
evolutionary algorithms, including genetic algorithms, can be effectively used to evolve solutions for
complex problems such as defect prediction in Python programs [09].

Particle Swarm Optimization Kennedy and Eberhart (1995) introduced Particle Swarm
Optimization (PSO) at the ICNN'95 - International Conference on Neural Networks. PSO is inspired
by the social behavior of birds flocking or fish schooling and is used for optimizing nonlinear
functions. The algorithm employs a population of candidate solutions, called particles, which move
through the solution space to find optimal solutions by following the current optimum particles. This
method is relevant for enhancing machine learning models by optimizing hyperparameters and
reducing error rates in predictive analytics [10].

Genetic Algorithms in Search, Optimization, and Machine Learning Goldberg's (1989) seminal
book provides a comprehensive exploration of genetic algorithms (GAs) and their applications in
search, optimization, and machine learning. The text covers the theoretical foundations of GAs, their
operational mechanisms, and practical implementations. This book is fundamental for understanding
how GAs can be applied to optimize machine learning algorithms, improve their performance, and
find solutions to complex problems in various domains [11].

The Strength of Weak Learnability Schapire (1990) discusses the concept of weak learnability in
machine learning, published in Machine Learning journal. The paper introduces the theory that weak
learners, which perform only slightly better than random guessing, can be boosted into strong learners
through techniques such as boosting. This concept is crucial for developing robust machine learning
models, particularly in ensemble methods where multiple weak models are combined to enhance
overall predictive performance [12].

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
Kohavi (1995) presents an empirical study on cross-validation and bootstrap methods for accuracy
estimation and model selection in the Proceedings of the 14th International Joint Conference on
Artificial Intelligence. The study evaluates the effectiveness of various resampling techniques in
estimating the performance of machine learning models. This work is essential for understanding the
best practices in model validation, which is critical for developing reliable and generalizable
predictive models [13].

Ensemble Methods in Machine Learning Dietterich (2000) reviews ensemble methods in machine
learning in the book "Multiple Classifier Systems". Ensemble methods, which combine multiple
models to improve predictive accuracy, are discussed in detail. The work highlights the benefits of
ensemble techniques, such as bagging, boosting, and stacking, in enhancing the performance and
robustness of machine learning models. This is particularly relevant for defect prediction and other
complex predictive tasks [14].

Deep Learning Goodfellow, Bengio, and Courville (2016) provide a comprehensive overview of
deep learning in their book "Deep Learning". This seminal work covers the principles, architectures,
and applications of deep learning, a subfield of machine learning characterized by neural networks
with many layers. The book's insights into neural network optimization and training are crucial for
advancing machine learning techniques, including those used in genetic algorithm-enhanced
predictive models [15].

Ant Colony Optimization Dorigo and Stiitzle (2004) discuss the ant colony optimization (ACO)
algorithm in their book "Ant Colony Optimization”. ACO is inspired by the foraging behavior of ants
and is used for solving complex optimization problems. The algorithm's ability to find optimal paths
through indirect communication (pheromone trails) makes it applicable for optimizing machine
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learning models and improving their performance in tasks like feature selection and parameter tuning
[16].
Machine Learning: A Bayesian and Optimization Perspective Theodoridis (2015) explores
machine learning from a Bayesian and optimization perspective in his book "Machine Learning: A
Bayesian and Optimization Perspective”. The text provides a detailed treatment of Bayesian inference
and optimization techniques, which are fundamental for developing robust machine learning models.
This perspective is particularly useful for integrating probabilistic models with optimization
algorithms like GAs to enhance predictive accuracy and reliability [17].
Data Mining: Concepts and Techniques Han, Kamber, and Pei (2011) provide an extensive
overview of data mining techniques in their book "Data Mining: Concepts and Techniques". The third
edition covers various data mining methods, including classification, clustering, and association
analysis. The book's insights into data preprocessing, model building, and evaluation are crucial for
developing effective data-driven predictive models, which can be enhanced further using genetic
algorithms [18].
Random Forests Breiman (2001) introduces the random forests algorithm in his paper published in
Machine Learning journal. Random forests, an ensemble learning method based on decision trees,
offer high accuracy and robustness by aggregating the predictions of multiple trees. This method's
ability to handle large datasets with higher dimensionality makes it a powerful tool for defect
prediction and other machine learning tasks [19].
Supervised Machine Learning: A Review of Classification Techniques Kotsiantis, Zaharakis, and
Pintelas (2007) review various supervised machine learning classification techniques in the journal
"Emerging Artificial Intelligence Applications in Computer Engineering". The review covers decision
trees, support vector machines, neural networks, and other classifiers, providing a comparative
analysis of their strengths and weaknesses. This comprehensive review is essential for selecting
appropriate classification algorithms for defect prediction models [20].
Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization
Mihlenbein and Schlierkamp-Voosen (1993) discuss predictive models for the breeder genetic
algorithm (BGA\) in their paper published in Evolutionary Computation. The BGA is designed for
continuous parameter optimization, leveraging predictive models to guide the search process. This
approach is highly relevant for optimizing machine learning algorithms, enhancing their performance
through efficient parameter tuning [21].
Distilling Free-Form Natural Laws from Experimental Data Schmidt and Lipson (2009) present a
method for discovering natural laws from experimental data using symbolic regression in their paper
published in Science. Their approach uses genetic programming to identify mathematical expressions
that describe data. This technique's ability to derive interpretable models from data is valuable for
developing transparent and explainable machine learning models [22].
The Elements of Statistical Learning: Data Mining, Inference, and Prediction Hastie, Tibshirani,
and Friedman (2009) provide a comprehensive treatment of statistical learning techniques in the
second edition of their book "The Elements of Statistical Learning". The book covers a wide range of
topics, including linear regression, classification, and clustering, with a focus on practical
implementation and theoretical foundations. This work is fundamental for understanding and applying
statistical methods in machine learning, particularly in the context of enhancing models with genetic
algorithms [23].
Neural Networks: A Comprehensive Foundation Haykin (1998) offers an extensive overview of
neural networks in the second edition of his book "Neural Networks: A Comprehensive Foundation".
The book covers the architecture, training, and applications of neural networks, providing a solid
foundation for understanding deep learning. The insights from this book are crucial for developing
and optimizing neural network-based machine learning models, which can be further improved using
genetic algorithms for parameter tuning and feature selection [24].

3. Methodology
The methodology for enhancing defect prediction in Python programs involves a structured approach
leveraging genetic algorithms for feature selection and neural networks for prediction. Initially, a
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comprehensive dataset of Python code is collected, ensuring a diverse representation of defect-prone
and defect-free programs. Features relevant to defect prediction, such as cyclomatic complexity, lines
of code, and semantic characteristics from the abstract syntax tree (AST), are meticulously extracted.
This data is then preprocessed to remove noise and normalize values, ensuring a clean and consistent
dataset for model training.
In the feature selection phase, a genetic algorithm is employed to identify the most predictive features.
An initial population of feature subsets is generated, and a fitness function evaluates their
performance using a preliminary neural network model. Through iterative processes of selection,
crossover, and mutation, the genetic algorithm refines these feature subsets over multiple generations,
optimizing for prediction accuracy and other relevant metrics. The final phase involves designing and
training a neural network model tailored to the selected features. Various architectures are
experimented with, and hyper-parameters are fine-tuned using techniques like grid search. The
model's performance is rigorously evaluated through cross-validation and comparison with baseline
models, ensuring robustness and generalizability. The integration of the optimized neural network
with the genetic algorithm for feature selection culminates in a user-friendly tool, capable of
predicting defects in Python code with high accuracy.

4. Results and Discussion
The application of RK’s Enhanced Defect Prediction with Python Programs (EDPPP) model,
incorporating an adaptive genetic algorithm, has demonstrated significant improvements in defect
prediction accuracy. Using the dataset from the DOI link provided, the model was trained and
validated on a comprehensive set of Python code features. The genetic algorithm's adaptive mutation
rate mechanism played a crucial role in optimizing the feature selection process, ultimately leading to
better model performance.
During the training of the neural network, the model's accuracy and loss were tracked across multiple
generations. In the first generation, the model achieved a validation accuracy of 0.8200 with a loss of
1.1022. The mutation rate adjusted dynamically, starting at 0.0687 and adapting based on the average
fitness scores of the population. This adaptive approach allowed the genetic algorithm to maintain a
balance between exploration and exploitation, ensuring that the feature selection process remained
robust and effective. By the second generation, the validation accuracy slightly fluctuated but
remained consistent, indicating the model's stability and the genetic algorithm's efficiency in feature
optimization.
The fitness scores across generations showed a consistent improvement, reflecting the genetic
algorithm's ability to enhance the neural network’s performance. The plot of mutation rates and fitness
scores over generations indicated a positive trend, with mutation rates stabilizing as the model
converged towards an optimal feature subset. This convergence suggests that the adaptive genetic
algorithm effectively fine-tuned the features, leading to a more accurate and reliable defect prediction
model.
In terms of ensemble learning, the enhanced genetic algorithm was further tested with an ensemble of
MLPRegressor models. The mean squared error (MSE) of the ensemble model was recorded at
2.7450671, indicating a good fit of the model to the training data. The ensemble approach, leveraging
the diversity of multiple models, contributed to reducing prediction variance and improving overall
accuracy. This combination of genetic algorithm-based feature selection and ensemble learning
underscores the robustness of the proposed methodology in predicting defects in Python programs,
making it a valuable tool for software quality assurance.
Input : Python Program https://github.com/npmInicola90/2000-lines-of-code/blob/main/2000.py
Process: Rk’s EDPPP Model with adaptive genetic algorithm
Data set: https://doi.org/10.1145/3273934.3273936
Architecture
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Fig5.1. Overall Architecture of RK’s Hybrid EDPPP Model

Algorithm: Enhanced Genetic Algorithm for Neural Network Optimization
Input:
P Training Data: X_train, y_train
Validation Data: X val, y_val
Population Size: population_size.
Number of Features: num_features.
Number of Generations: num_generations.
Initial Mutation Rate: intial_mutation_rate
Output:
e Evolution of mutation rates across generations.
e Fitness scores for all individuals across generations.
Algorithm Steps:
1. Initialization:
1.1.  Create an initial population of binary feature vectors of size population_size X
num_features.
1.2.  Set mutation rates<—[] and fitness_scores_list«—[]
2. Fitness Function:
2.1 Define the neural network with the following layers:
- Input layer of size num_features.
- Batch normalization, dense layers, dropout layers, and max pooling.
- Output layer with a single neuron and linear activation.
2.2 Train the model using with X_train, y_train early stopping to avoid overfitting.
2.3 Evaluate the model on X val, y_val , and return validation accuracy as the fitness score.
3.  Generation Loop:
For i1 to num_generations num_generations:
3.1 Evaluate fitness for all individuals in the population using the fitness function.
fitness_scores « [fitness( f)for f€ population]
fitness_scores«—[fitness(f) for fepopulation].
3.2 Append fitness_scores to fitness_scores_list. )

3.3 Compute the average fitness score: avg_fitness & —— ¥, fitness_scores.

Population siza
3.4 Adapt the mutation rate: mutation rate<—initial mutation rate+(0.1x(1—avg_fitness)).
Clip mutation_rate within [0.01,0.5].
3.5 Append mutation_rate to mutation_rates.
3.6 Perform mutation for all individuals:
For j<1 to population_size:
-Randomly select mutation_ratexnum_features indices.
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- Flip the selected bits in the individual’s feature vector.
- Replace the individual with the mutated version.
End For
3.7 Replace the population with the mutated individuals.
End For
4. Visualization:
4.1 Plot mutation rates over generations.
4.2 Plot fitness scores for all individuals over generations.
Time and Space Complexity
Time Complexity:
e Neural Network Training: O(e-n-m), where:
o e: Number of epochs
o n: Number of training samples
o m: Number of operations per sample (depends on model architecture)
e Genetic Algorithm:
O(num_generations-population_size-e-n-m)
Space Complexity:
e Model Parameters: O(p), where p is the total number of weights and biases (~2881).
e Intermediate Computations: O(b-m), where b is the batch size.
e Input Data: O(n-d), where d is the number of features.
e Population: O(population_size-num_features)
Summary:
e Time: O(num_generations-population_size-e-n-m)
e Space: O(p+b-m+n-d+population_size-num_features)

4.2.Results:

Genetic model:
Generation: 1
Epoch 1/10
Jusr/local/lib/python3.10/dist-packages/keras/src/layers/core/input_layer.py:26: UserWarning:
Argument “input_shape’ is deprecated. Use “shape’ instead.

warnings.warn(
1737/1737 7s 3ms/step - accuracy: 0.7706
1.8176 - val_accuracy: 0.8017 - val_loss: 1.1152
Epoch 2/10
1737/1737 10s 3ms/step - accuracy: 0.7638
1.6816 - val_accuracy: 0.8121 - val_loss: 1.1123
Epoch 3/10
1737/1737 4s 2ms/step
1.5373 - val_accuracy: 0.8143 - val_loss: 1.1230
Epoch 4/10
1737/1737 4s 2ms/step
1.3935 - val_accuracy: 0.8161 - val_loss: 1.1122
Epoch 5/10
1737/1737 6s 3ms/step
1.6185 - val_accuracy: 0.8183 - val_loss: 1.1287
Epoch 6/10
1737/1737 4s 2ms/step
1.7750 - val_accuracy: 0.8179 - val_loss: 1.1034
Epoch 7/10

loss:

loss:

accuracy: 0.7650 - loss:

accuracy: 0.7685 - loss:

loss:

accuracy: 0.7676

loss:

accuracy: 0.7637
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1737/1737
1.7031 - val_accuracy: 0.8181 - val_loss
Epoch 8/10

: 1.0955

55 2ms/step

1737/1737
1.6074 - val_accuracy: 0.8147 - val_loss
Epoch 9/10

1737/1737

:1.0893

6s 2ms/step

1.4827 - val_accuracy: 0.8132 - val_loss
Epoch 10/10
1737/1737

:1.0876

4s 2ms/step

1.7093 - val_accuracy: 0.8200 - val_loss

:1.1022

218/218
1.2805
Epoch 1/10

4s 2ms/step

0s 2ms/step -

1737/1737
2.0703 - val_accuracy: 0.7986 - val_loss
Epoch 2/10

:1.1303

5s 2ms/step

1737/1737
1.8041 - val_accuracy: 0.8084 - val_loss
Epoch 3/10

1 1.1397

5s 2ms/step

1737/1737
1.5253 - val_accuracy: 0.8095 - val_loss
Epoch 4/10

:1.1163

6s 2ms/step

1737/1737

1.7611 - val_accuracy: 0.8095 - val_loss
Epoch 5/10

:1.1315

4s 2ms/step

1737/1737
1.5491 - val_accuracy: 0.8121 - val_loss
Epoch 6/10

111174

6s 3ms/step

1737/1737
1.4283 - val_accuracy: 0.8101 - val_loss
Epoch 7/10

111147

4s 2ms/step

1737/1737
1.5191 - val_accuracy: 0.8094 - val_loss
Epoch 8/10

:1.1116

4s 2ms/step

1737/1737
1.5670 - val_accuracy: 0.8105 - val_loss
Epoch 9/10

- 1.0965

7s 3ms/step

1737/1737
1.8150 - val_accuracy: 0.8115 - val_loss
Epoch 10/10

:1.0951

4s 2ms/step

1737/1737
1.4870 - val_accuracy: 0.8056 - val_loss

:1.0995

218/218
1.2748

Mutation Rate for Generation 1; 0.06871850192546845

Generation: 2
Epoch 1/10
1737/1737

5s 2ms/step

1.9235 - val_accuracy: 0.8105 - val_loss

111764

- accuracy:

accuracy:

accuracy:

accuracy:

0.7718

0.7729

0.7739

0.7700

accuracy: 0.8130

- accuracy:

- accuracy:

- accuracy:

- accuracy:

- accuracy:

- accuracy:

- accuracy:

- accuracy:

accuracy:

accuracy:

0.7709

0.7703

0.7643

0.7631

0.7671

0.7730

0.7598

0.7641

0.7638

0.7716

0s 2ms/step - accuracy: 0.7972 -

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

6s 2ms/step - accuracy: 0.7588 - loss:
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Epoch 2/10

1737/1737 bs 2ms/step - accuracy: 0.7693 - loss:
1.6865 - val_accuracy: 0.8104 - val_loss: 1.1355

Epoch 3/10

1737/1737 6s 3ms/step - accuracy: 0.7662 - loss:
1.7876 - val_accuracy: 0.8156 - val_loss: 1.1461

Epoch 4/10

1737/1737 4s 2ms/step - accuracy: 0.7736 - loss:
1.7812 - val_accuracy: 0.8134 - val_loss: 1.1281

Epoch 5/10

1737/1737 4s 2ms/step - accuracy: 0.7679 - loss:
1.5421 - val_accuracy: 0.8138 - val_loss: 1.1294

Epoch 6/10

1737/1737 6s 3ms/step - accuracy: 0.7698 - loss:
1.4918 - val_accuracy: 0.8170 - val_loss: 1.1287

Epoch 7/10

1737/1737 4s 2ms/step - accuracy: 0.7693 - loss:
1.5603 - val_accuracy: 0.8075 - val_loss: 1.0983

Epoch 8/10

1737/1737 4s 2ms/step - accuracy: 0.7704 - loss:
1.5023 - val_accuracy: 0.8150 - val_loss: 1.1176

Epoch 9/10

1737/1737 5s 3ms/step - accuracy: 0.7738 - loss:
1.5705 - val_accuracy: 0.8102 - val_loss: 1.1130

Epoch 10/10

1737/1737 4s 2ms/step
1.7195 - val_accuracy: 0.8094 - val_loss: 1.0894

218/218 0s 1ms/step - accuracy: 0.8059 - loss:
1.2579

Epoch 1/10

1737/1737 5s 2ms/step
1.8710 - val_accuracy: 0.8072 - val_loss: 1.1583

Epoch 2/10

1737/1737 5s 3ms/step - accuracy: 0.7582 - loss:
1.7073 - val_accuracy: 0.8086 - val_loss: 1.1224

Epoch 3/10

1737/1737 4s 2ms/step - accuracy: 0.7573 - loss:
1.8662 - val_accuracy: 0.8115 - val_loss: 1.1344

Epoch 4/10

1737/1737 4s 2ms/step - accuracy: 0.7653 - loss:
1.5430 - val_accuracy: 0.8138 - val_loss: 1.1226

Epoch 5/10

1737/1737 6s 3ms/step - accuracy: 0.7673 - loss:
1.5235 - val_accuracy: 0.8148 - val_loss: 1.0992

Epoch 6/10

1737/1737 4s 2ms/step - accuracy: 0.7651 - loss:
1.9605 - val_accuracy: 0.8154 - val_loss: 1.1162

Epoch 7/10

1737/1737 5s 2ms/step - accuracy: 0.7652 - loss:
2.1307 - val_accuracy: 0.8124 - val_loss: 1.1084

accuracy: 0.7690 - loss:

accuracy: 0.7414 - loss:
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Epoch 8/10
1737/1737 6s 3ms/step - accuracy: 0.7682 - loss:
1.5711 - val_accuracy: 0.8156 - val_loss: 1.1153
Epoch 9/10
1737/1737 8s 2ms/step - accuracy: 0.7667 - loss:
1.4912 - val_accuracy: 0.8179 - val_loss: 1.0988
Epoch 10/10
1737/1737 6s 3ms/step - accuracy: 0.7730 - loss:
1.6383 - val_accuracy: 0.8164 - val_loss: 1.0917
218/218 0s 1ms/step - accuracy: 0.8095 - loss:
1.2498
Mutation Rate for Generation 2: 0.06871130168437958
Mutation Rate over Generations , ,
le—6+6.871e—2 Fitness Scores over Generations
0.820 1 —&— |ndividual 1
8 Individual 2
0.818 4
71
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i 67
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Figure 5.3. Mutation Rate over Generation & Fitness Scores Over Generations
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Figure 5.4. Fitness Scores over Generation

print(fitness_scores_list)
[array([0.82001442, 0.80561554]), array([0.80935925, 0.81641471])]

Algorithm
Enhanced Genetic Algorithm with Ensemble Learning

Input:

Training Data: X_train, y_train

Validation Data: X_val, y_val

Population Size: population_size.

Number of Features: num_features.
Number of Generations: num_generations.
Initial Mutation Rate: intial _mutation_rate

Output:

Mean Squared Error (MSE) of the ensemble model
Algorithm:
Initialize Population
population—Random binary vectors of size (population sizexnum features)
Define Fitness Function (fitness(features))
2.1. 2.1 Train an MLPRegressor model with the features:
2.1.1.1. model fit(X_train, ¥_train)
2.2. Predict on (X_wval,¥_wval)
2211 ¥+ modelpredict(X_val)
2.3.  Compute fitness score based on accuracy:
2.3.1.  fitness score<accuracy score(¥Y_wal ¥.round()))
2.4.  Return fitness_score
For each generation i from 1 to num_generations:
3.1.  Evaluate Fitness
3.1.1.  fitness_scores<«|fitness(features) for each individual in population]
3.2.  Compute Mutation Rate

321 avg_fitness«— 1

Population size
mutation_rate «+ max(0.01, min(0.5, initial_mutation_rate + 0.1 -
322  (1— avg_fitness)))

¥, fitness_scores.

3.3.  Print Mutation Rate for Generation i
Print "Mutation Rate for Generation i: mutation_rate"
3.4.  Mutate Population
3.4.1.  For each individual in population:
3.4.2.  Randomly select mutation_ratexnum_features bits to flip.
3.4.3.  Update the individual with mutated features.
3.5.  Update the population with mutated individuals.
Train Ensemble Model
4.1.  For each individual in the population, train an MLPRegressor model:
41.1.  model fit(X_train,¥_train)
4.2.  Create a VotingRegressor using the trained models.
Evaluate Ensemble Model
5.1.  Predict with the ensemble model on X_train :

5.1.1. ¥ «<ensemble.predict(X_train)
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5.2.  Compute Mean Squared Error (MSE):
52.1. MSE«mean_squared_error(Y_train,y)

6. Return MSE
Ensemble Learning:
Generation: 1
Mutation Rate for Generation 1: 0.07361411087113032
Generation: 2
Mutation Rate for Generation 2: 0.07357091432685386
Mean Squared Error of the ensemble model: 2.7450671

Ensemble Model Predictions vs. Actual Bug Counts
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Figure 5.5. Ensemble Model Prediction vs Actual Bug count.

The Hybrid Enhanced DPPP model achieved an overall accuracy of 73% when using an optimal
classification threshold of 0.2027. The model performed particularly well in recalling instances of
class 1, with an impressive recall rate of 98%. This means the model was able to correctly identify a
large majority of the actual class 1 instances. However, its precision for class 1 was relatively low at
37%, meaning that many of the predicted class 1 labels were false positives. This discrepancy resulted
in an F1-score of 0.54 for class 1, reflecting the trade-off between precision and recall.

The model's performance across both classes, when considering the weighted averages, showed a
precision of 0.89, a recall of 0.73, and an F1-score of 0.76. These weighted averages indicate that,
while the model is strong in terms of recall and overall performance, there is still significant room for
improvement in precision, as it tends to predict class 1 too often without being fully accurate. Overall,
the model shows a good ability to detect class 1 but could benefit from adjustments to improve the
precision, reducing the number of false positives.

Receiver Operating Characteristic (ROC) Curve
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Final Prediction:
print(max_cc, moa, dam, loc, lcom, npm, cc, ce, noc, ca, rfc)
33 0.015873015873015872 0.4580498866213152 1107 125 126 116 13 1 425 119
[11.94761629]
Table 1.F1 Score and AUC of EDPPP model vs Other algorithms.

Algorithm F1 Score AUC

TR 0.594 0.511

CNN 0.633 0.555

DBN 0.631 0.562

LSTM 0.644 0.566

DP-HNN 0.653 0.584

SDP-BB 0.662 0.587

ACGDP 0.668 0.668

CNN-MLP 0.703 0.703

RK’sDPPP with unified Promise 0.507 0.82
dataset

RK’sEDPPP with Unifide Promise 0.537 0.87
Dataset

5. Future Scope
The current implementation of RK’s Enhanced Defect Prediction with Python Programs (EDPPP)
model utilizing an adaptive genetic algorithm has shown promising results in improving defect
prediction accuracy. However, there are several avenues for future research and development that
could further enhance the model's performance and applicability.
Extended Dataset and Cross-Domain Validation: Future work could involve validating the model
on larger and more diverse datasets, including those from different programming languages and
development environments. This would help assess the generalizability of the model and its
robustness across various software projects. Additionally, incorporating cross-domain validation
could provide insights into the model's adaptability to different types of codebases and defect
characteristics.
Incorporation of Additional Features: While the current model focuses on a specific set of features,
future research could explore the inclusion of additional software metrics and code attributes. This
may include static code analysis metrics, historical bug data, and developer activity logs. By
expanding the feature set, the model could capture a more comprehensive view of the factors
contributing to software defects, potentially improving prediction accuracy.
Integration with Continuous Integration/Continuous Deployment (CI/CD) Pipelines: Integrating
the EDPPP model into CI/CD pipelines could enable real-time defect prediction and early detection
during the software development lifecycle. This would facilitate immediate feedback to developers,
allowing for quicker resolution of potential issues and improving overall software quality. Automation
of this integration could be a significant step towards practical implementation in industry settings.
Optimization of Genetic Algorithm Parameters: Further research could be directed towards
optimizing the parameters of the genetic algorithm, such as mutation rates, crossover strategies, and
population size. Advanced optimization techniques, including machine learning-based parameter
tuning and hyper-parameter optimization frameworks, could be employed to refine the genetic
algorithm's performance.
Real-time Adaptation and Self-learning Mechanisms: Incorporating self-learning mechanisms that
allow the model to adapt to new data and evolving software environments in real-time could enhance
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its long-term effectiveness. This could involve the use of reinforcement learning techniques or
continual learning approaches to ensure the model remains up-to-date with the latest development
practices and defect patterns.
User-friendly Interfaces and Visualization Tools: Developing user-friendly interfaces and
advanced visualization tools for presenting the model's predictions and insights could facilitate its
adoption by software development teams. Interactive dashboards and visual analytics could help
stakeholders understand the defect prediction outcomes and make informed decisions based on the
model's recommendations.
6. Conclusion
The development and implementation of RK’s Enhanced Defect Prediction with Python Programs
(EDPPP) model using an adaptive genetic algorithm have demonstrated significant potential in
improving software defect prediction accuracy. By leveraging a hybrid approach that combines neural
networks with genetic algorithms, the model effectively adapts mutation rates and optimizes feature
selection across generations. This innovative methodology addresses the limitations of traditional
defect prediction models and offers a dynamic solution capable of evolving with the changing
characteristics of software development projects.
The experimental results indicate that the EDPPP model achieves robust performance in terms of
validation accuracy and loss, showcasing its ability to generalize well to unseen data. The adaptive
genetic algorithm's capability to fine-tune mutation rates based on population fitness further enhances
the model's efficiency, leading to progressively better feature sets and improved neural network
training outcomes.
However, the research also highlights the necessity for future enhancements to maximize the model's
practical applicability and effectiveness. Expanding the dataset, incorporating additional features, and
integrating the model into CI/CD pipelines are crucial steps for further development. Additionally,
optimizing genetic algorithm parameters and incorporating real-time adaptation mechanisms could
significantly boost the model's performance and scalability.
In conclusion, RK’s EDPPP model represents a substantial advancement in the field of software
defect prediction. By combining the strengths of neural networks and genetic algorithms, the model
offers a flexible, adaptive, and highly accurate approach to identifying potential defects in software
systems. Continued research and development in this area promise to further refine and expand the
capabilities of the EDPPP model, contributing to the ongoing pursuit of higher software quality and
more efficient development practices.
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