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ABSTRACT 

In maritime surveillance, where ensuring the safety of shipping routes and detecting 

potential threats is paramount, the need for efficient vessel detection models is 

critical. Unauthorized vessels pose a significant threat to maritime security, 

competing for essential resources such as shipping lanes and port access. Traditional 

methods of vessel detection, such as manual monitoring or blanket radar scans, are 

time-consuming, labor-intensive, and often result in overuse of resources, leading to 

operational inefficiency and potential security breaches. This paper presents a 

Hyperparameter-Tuned Deep Learning model for Vessel Detection and 

Classification (HPTDL-VDAC) suitable for Maritime Surveillance applications. The 

proposed HPTDL-VDAC system integrates advanced techniques from computer 

vision and deep learning to accurately identify and classify vessels in Synthetic 

Aperture Radar (SAR) images. The workflow begins with pre-processing steps 

aimed at enhancing image quality and reducing noise. Specifically, a Gaussian Filter 

(GF) is employed to effectively remove noise from input images, followed by 

resizing to standard dimensions for subsequent analysis. 

For object detection and classification, the RetinaNet model is employed. RetinaNet's 

innovative architecture, featuring a focal loss mechanism, enables robust detection 

of vessel instances amidst varying backgrounds and sea conditions. Notably, the 

hyperparameters of the RetinaNet model are fine-tuned using the ADAM optimizer, 

optimizing its performance for the specific task of vessel detection in maritime 

surveillance scenarios. A thorough simulation analysis of the HPTDL-VDAC 

technique was conducted using a benchmark dataset. Experimental results 

demonstrate the effectiveness of the proposed system in accurately detecting vessels 

in various maritime environments. This shows that it exhibits improved results 

compared to recent approaches on various metrics.  
 

1. Introduction 

Maritime surveillance plays a pivotal role in safeguarding global shipping routes and 

maintaining the integrity of oceanic operations. As maritime trade serves as the backbone of 

the global economy, the need for advanced systems to monitor, detect, and respond to potential 

threats is more pressing than ever. Unauthorized vessels, including those involved in illegal 

fishing, smuggling, or piracy, pose significant risks to maritime security. These vessels not 

only disrupt legitimate trade but also strain critical resources such as shipping lanes and port 

access. Consequently, the development of efficient, accurate, and scalable vessel detection and 

classification models is of paramount importance. Traditional methods for vessel detection 
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have relied heavily on manual monitoring, radar scans, and other legacy systems. While these 

approaches have proven effective in the past, they are often labor-intensive, time-consuming, 

and prone to inefficiencies. For instance, blanket radar scans generate vast amounts of data that 

require extensive analysis, often leading to delays in threat identification. Moreover, manual 

monitoring systems are subject to human error, which can result in the misclassification of 

vessels or missed detections altogether. These limitations underscore the necessity for adopting 

advanced technological solutions capable of addressing the challenges of modern maritime 

surveillance. In recent years, the integration of deep learning and computer vision techniques 

has revolutionized various domains, including maritime surveillance. SAR imagery, with its 

ability to capture high-resolution images in diverse weather and lighting conditions, has 

emerged as a critical resource for vessel detection. Leveraging SAR imagery, deep learning 

models can effectively identify and classify vessels with remarkable precision. However, the 

effectiveness of such models hinges on the optimization of their underlying parameters and 

architectures to ensure adaptability and accuracy in complex maritime environments. 

1.1 Paper Contributions 

This paper introduces the Hyperparameter-Tuned Deep Learning model for Vessel Detection 

and Classification (HPTDL-VDAC), a novel approach designed specifically for maritime 

surveillance applications. The HPTDL-VDAC system integrates cutting-edge advancements in 

computer vision and deep learning to address the inherent challenges of vessel detection in 

SAR imagery. The proposed workflow begins with comprehensive pre-processing techniques 

aimed at enhancing image quality and mitigating noise artifacts. Specifically, a Gaussian Filter 

(GF) is employed to effectively remove noise from input images, ensuring that subsequent 

analysis is not compromised by extraneous elements. The pre-processed images are then 

resized to standardized dimensions to facilitate consistency across the detection pipeline. For 

object detection and classification, the HPTDL-VDAC framework employs the RetinaNet 

model. RetinaNet’s innovative architecture, characterized by its focal loss mechanism, is 

particularly well-suited for handling the class imbalance often encountered in maritime 

datasets. This capability enables robust detection of vessel instances, even amidst challenging 

sea conditions and varying backgrounds. To further optimize the model’s performance, 

hyperparameter tuning is conducted using the ADAM optimizer. This iterative optimization 

process ensures that the model is finely tuned to the specific requirements of vessel detection 

in maritime surveillance scenarios. To evaluate the efficacy of the HPTDL-VDAC system, 

extensive simulation analyses were conducted using a benchmark dataset. The experimental 

results underscore the system’s superior performance in accurately detecting vessels across 

diverse maritime environments. When compared to recent approaches, the HPTDL-VDAC 

model demonstrated significant improvements across various performance metrics, 

highlighting its potential as a transformative solution for maritime surveillance applications. 

This paper builds upon existing research in the field, including notable advancements in SAR-

based vessel detection and deep learning methodologies. For instance, recent studies have 

demonstrated the utility of SAR imagery in capturing fine-grained details of maritime scenes 

[1, 2]. Similarly, the application of RetinaNet in object detection tasks has been extensively 

validated in prior work [3]. By integrating these established techniques and augmenting them 

with hyperparameter tuning, the HPTDL-VDAC system offers a robust, scalable, and efficient 

solution for contemporary maritime surveillance challenges. 

In the sections that follow, we delve deeper into the technical underpinnings of the HPTDL-

VDAC framework, providing detailed insights into its architecture, implementation, and 

performance evaluation. Through this exploration, we aim to underscore the transformative 
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potential of hyperparameter-tuned deep learning models in enhancing maritime security and 

operational efficiency. 

2. Related works 

Y. Liu et al. [4] addresses the challenges posed by the complex maritime environments 

captured in Sentinel-1 SAR imagery, such as varying sea states and cluttered backgrounds. The 

authors combine multiple deep learning models to enhance detection accuracy and resilience, 

showcasing their method's superiority over single-model approaches. The experimental results 

demonstrate significant improvements in detection performance, making the proposed 

ensemble model a valuable contribution to the field of remote sensing and maritime 

surveillance. X. Zhang et al. [5] presents a methodical exploration of hyperparameter 

optimization to enhance vessel detection in SAR imagery. The authors employ advanced tuning 

techniques to refine model performance, addressing challenges such as noise, cluttered 

backgrounds, and varying sea conditions. W. Bao et al. [6] propose innovative pretraining 

techniques that leverage complementary learning methods to enhance the model's performance 

in detecting ships in complex environments. They combine different data augmentation 

strategies and pretrained feature extractors to address challenges posed by the diverse and 

cluttered nature of SAR images. S. P. Tiwari et al. [7] explores the application of Convolutional 

Neural Networks for the automated monitoring of marine vessels. The authors propose an 

effective CNN-based framework designed to classify and track vessels in oceanic 

environments. The paper highlights the advantages of deep learning in overcoming challenges 

such as varying lighting conditions, vessel sizes, and environmental noise.  J. Wang et al. [8] 

introduces an advanced method for optimizing hyperparameters in object detection models 

using an enhanced genetic algorithm. The authors present a novel approach that improves the 

traditional genetic algorithm by incorporating more efficient search strategies and adaptation 

mechanisms to better explore the hyperparameter space. X. Zhang et al. [9] provides a 

comprehensive review of the advancements in deep learning techniques for ship detection in 

SAR imagery. The authors trace the evolution of methods from traditional image processing 

techniques to more recent deep learning approaches, emphasizing the significant improvements 

in detection accuracy, robustness, and efficiency brought about by convolutional neural 

networks and other deep architectures. J. Chen et al. [10] offers an in-depth exploration of deep 

learning methodologies applied to ship detection in SAR imagery. The authors discuss the 

challenges of training deep models with SAR data, including data scarcity and class imbalance, 

and propose solutions like data augmentation and transfer learning.  

Y. Ren et al. [11] presents a deep learning model designed to accurately estimate the size of 

ships in Sentinel-1 SAR images. The authors address common challenges in SAR ship 

detection, such as varying ship orientations, environmental noise, and limited resolution. Z. 

Hou et al. [12] offers a novel integrated approach for ship detection and recognition in Synthetic 

Aperture Radar images using deep learning techniques. The authors propose a dual-stage 

framework that first detects ships and then classifies them, effectively combining detection and 

recognition tasks to improve the overall performance of ship identification in SAR imagery. Y. 

Chen et al. [13] introduces an end-to-end deep CNN model designed for ship detection in 

complex SAR images. The deep CNN architecture is optimized to deal with the challenges 

posed by complex scenes, including background noise, variable ship sizes, and different 

orientations. This paper contributes to advancing the field of SAR image analysis by offering 

a robust and scalable solution for end-to-end ship detection. F. Paolo et al. [14] explores the 

use of SAR imagery combined with deep learning techniques for the efficient detection of 

maritime objects. The authors propose a deep learning framework that effectively identifies 

ships and other maritime objects in SAR images, addressing key challenges such as clutter, low 

resolution, and environmental factors that typically complicate detection. H. Su et al. [15] 

presents an enhanced version of the RetinaNet model for high-resolution ship detection in SAR 
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images. By modifying the original RetinaNet architecture and incorporating advanced 

techniques such as feature fusion and multi-scale processing, the model is able to more 

effectively identify ships in SAR images with high precision. R. Wang et al. [16] introduces a 

novel approach to ship detection in SAR images using lightweight neural networks designed 

for real-time applications. The paper emphasizes the importance of optimizing network size 

and complexity to enable faster processing, making the approach suitable for large-scale 

surveillance systems with limited resources. H. Su et al. [17] introduces an enhanced version 

of the RetinaNet model, termed RetinaNet-Plus, for ship detection in high-resolution SAR 

images. The authors propose improvements to the standard RetinaNet architecture, 

incorporating techniques to better handle the challenges of high-resolution SAR imagery, such 

as ship size variability, complex backgrounds, and environmental noise. RetinaNet-Plus is 

designed to enhance the detection accuracy and robustness, particularly in challenging 

maritime scenarios. 

3. The Proposed Model 

The present research introduces a novel HPTDL-VDAC technique designed to effectively 

identified the vessels in maritime surveillance. This technique incorporates several 

subprocesses, including GF-based preprocessing, RetinaNet-based object detection, and 

ADAM-based parameter optimization. The proposed model successfully identifies and 

classifies vessels, thereby enhancing maritime security and operational efficiency. Figure 1 

provides an overview of the entire process of the HPTDL-VDAC technique. 

 
Figure 1: Overall process of HPTDL-VDAC technique 

3.1 Image Pre-processing 

Image pre-processing is a pivotal step in preparing raw SAR image data for subsequent analysis 

and interpretation. It involves various operations aimed at enhancing image quality, reducing 

noise, and standardizing data for further processing. This step is essential in vessel detection 

systems to ensure the accuracy and reliability of the detection process. In the proposed model, 

pre-processing comprises two essential processes: noise removal using a Gaussian Filter, and 

subsequent image resizing to facilitate further processing. 
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3.1.1 Noise Removal using GF technique 

Initially, a Gaussian filter approach is employed to eliminate noise present in SAR images. 

Noise removal is a critical image pre-processing technique aimed at enhancing the features of 

images corrupted by noise. The Gaussian filter operates by convolving the image with a 

Gaussian kernel, which effectively smooths out high-frequency noise components while 

preserving the underlying structures and edges in the image. 

The Gaussian kernel is a matrix used for the convolution operation. It is defined by the 

Gaussian function: 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2 exp (−
𝑥2+𝑦2

2𝜎2 )        (1) 

Where: 

𝐺(𝑥,𝑦) represents the value of the Gaussian kernel at position (𝑥,𝑦) 

𝜎 is the standard deviation of the Gaussian distribution, 

𝑥 and 𝑦are the spatial coordinates within the kernel. 

The convolution process entails moving the Gaussian kernel across the image and calculating 

the weighted sum of pixel values within the kernel's window at each specific location. This can 

be expressed as follows: 

𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗). 𝐺(𝑖, 𝑗)𝑘
𝑗=−𝑘

𝑘
𝑖=−𝑘      (2) 

Where: 

𝐼(𝑥,𝑦) is the original pixel intensity at position (𝑥,𝑦) 

𝐺(𝑖,𝑗) is the value of the Gaussian kernel at position (𝑖,𝑗) 
𝑘 is the size of the Gaussian kernel 

After the Gaussian filter is applied, the high-frequency noise components in the SAR images 

are reduced, resulting in a smoother and clearer image. This noise reduction greatly improves 

image quality and enhances the effectiveness of subsequent processing tasks, such as vessel 

identification and detection. 

3.1.2 Image Resizing 

Image resizing is carried out to standardize the dimensions of input images, ensuring 

uniformity across the dataset and enabling efficient processing. This involves adjusting the 

image to a predetermined width and height while maintaining the aspect ratio. The process of 

image resizing can be represented as follows: 

𝑅𝑒𝑠𝑖𝑧𝑒𝑑_𝐼𝑚𝑎𝑔𝑒(𝑖) = 𝑟𝑒𝑠𝑖𝑧𝑒(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝐼𝑚𝑎𝑔𝑒(𝑖), 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡)   (3) 

Where Original_Image(𝑖) represents the 𝑖𝑡ℎ original image, and width and height denote the 

desired dimensions of the resized image. 

3.2 Dataset Splitting 

Dataset splitting is an essential step in machine learning and statistical modeling, where the 

available dataset is divided into separate subsets for training and testing. The training set is 

used to train the model, while the testing set is used to evaluate the model's performance and 

assess its generalization to unseen data. Let's denote the entire dataset as DD containing NN 

samples. The dataset splitting process can be represented as follows: 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡(𝐷𝑡𝑟𝑎𝑖𝑛) = {(𝑥𝑖, 𝑦𝑖)} 𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1

       (4) 
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𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑒𝑡(𝐷𝑡𝑒𝑠𝑡) = {(𝑥𝑖, 𝑦𝑖)} 𝑁𝑡𝑒𝑠𝑡
𝑖=1

        (5) 

Dataset splitting is crucial for assessing how well our vessel detection model generalizes to 

unseen SAR images. By evaluating the model on a separate testing set, we obtain an unbiased 

estimate of its performance. Training a model on the entire dataset without validation or testing 

can lead to overfitting, where the model learns to memorize the training data instead of 

capturing underlying patterns. Dataset splitting helps mitigate overfitting by providing a 

separate testing set for evaluation. This is essential for deploying the model in real-world 

maritime surveillance applications. 

3.3 Optimized RetinaNet based Object Detection 

This manuscript employs the RetinaNet technique for the effective detection of vessels in SAR 

images. The RetinaNet deep learning architecture is a sophisticated model tailored for high-

accuracy object detection, making it ideal for vessel detection and classification in maritime 

surveillance. The process begins with input SAR images, which are passed through the 

backbone network, typically a pre-trained ResNet-50 or ResNet-101. This network extracts 

hierarchical features from the images at various levels of abstraction. These features are then 

fed into a Feature Pyramid Network (FPN), which constructs a multi-scale feature pyramid, 

enabling the detection of vessels at different sizes and scales. The model includes two 

specialized subnets: the classification subnet and the box regression subnet. The classification 

subnet processes the feature maps to predict the probability of each anchor box containing a 

vessel or background. The box regression subnet predicts the coordinates of the bounding 

boxes around the detected objects. The final output of RetinaNet consists of class probabilities 

and precise bounding box coordinates for each detected vessel, enabling accurate and effective 

maritime surveillance by allowing for targeted interventions. The entire detection process is 

depicted in Figure 2. 

 
Figure 2: RetinaNet Model for Vessel Detection 

3.3.1 Backbone Network 

The backbone network in the RetinaNet model is typically a pre-trained convolutional neural 

network, such as ResNet-50 or ResNet-101. This network is responsible for extracting 
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hierarchical feature maps from the input SAR image. In this manuscript, we utilize ResNet-50 

as the backbone network of the proposed model. The backbone network processes an input 

image 𝐼 through a series of convolutional layers, which can be described as follows: 

• The input image 𝐼 is first convolved with a set of filters to produce the initial feature 

map 𝐹0: 

𝐹0 = 𝐶𝑜𝑛𝑣(𝐼, 𝑊0) + 𝑏0         (6) 

where 𝑊0 and 𝑏0 are the weights and biases of the initial convolutional layer. 

• This feature map 𝐹0 is then passed through a non-linear activation function (typically 

ReLU) and pooling layer: 

𝐹0 = 𝑅𝑒𝐿𝑈(𝐹0)          (7) 

𝐹0 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹0)         (8) 

• The feature maps are then processed through a series of residual blocks. Each residual 

block is composed of multiple convolutional layers with skip connections, facilitating 

easier gradient flow. For a residual block at layer 𝑙: 

𝐹𝑙 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝐹𝑙−1, 𝑊𝑙) + 𝑏𝑙        (9) 

Here, 𝐹𝑙−1 is the input feature map to the 𝑙-th residual block, and 𝑊𝑙 and 𝑏𝑙 are the weights 

and biases for the convolutions within the block. 

• The output of the residual block is added to its input through a skip connection: 

𝐹𝑙 =  𝐹𝑙 + 𝐹𝑙−1                   (10) 

• The backbone network produces feature maps from various layers, typically after each 

stage of residual blocks. These feature maps correspond to different levels of the 

network, capturing diverse spatial resolutions and feature complexities. The feature 

pyramid in the FPN is constructed using these feature maps. 

3.3.2 Feature Pyramid Network 

The Feature Pyramid Network (FPN) in the RetinaNet model creates a multi-scale feature 

representation from the outputs of the backbone network, facilitating the robust detection of 

vessels of various sizes. The feature maps extracted from the backbone network are denoted as 

C2, C3, C4, and C5. These feature maps correspond to different levels of the backbone network, 

with C2 having the highest spatial resolution and C5 having the lowest. 

Top-Down Pathway: The Feature Pyramid Network (FPN) initiates a top-down pathway, 

where higher-level feature maps are upsampled and combined with lower-level feature maps. 

This process enhances the ability to detect vessels of various sizes effectively. 

Lateral Connections: Lateral connections are utilized to merge the upsampled feature maps 

with the corresponding feature maps from the backbone network, effectively combining multi-

scale information for improved vessel detection. 

Initial Coarser Feature Map  

𝑃5 = 𝐶𝑜𝑛𝑣1𝑥1(𝐶5)                    (11) 

Here, 𝐶𝑜𝑛𝑣1𝑥1 denotes a 1x1 convolution used to reduce the number of channels. 

Subsequent Feature Maps  

For levels 𝑃𝑙 where 𝑙=4,3,2: 

𝑃𝑙 = 𝐶𝑜𝑛𝑣1𝑥1(𝐶𝑙) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃𝑙+1)                 (12) 

𝐶𝑜𝑛𝑣1𝑥1(𝐶𝑙): 1x1 convolution to reduce the number of channels in 𝐶𝑙. 

𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃𝑙+1): Upsampling the coarser feature map 𝑃𝑙+1 by a factor of 2. 



                                  Enhanced Vessel Detection for Maritime Surveillance Using  

                                 Hyperparameter-Tuned Deep Learning on SAR Images 

 SEEJPH Volume XXV, 2024, ISSN: 2197-5248; Posted:24-10-2024 

2990 | P a g e  

 

The construction of the finer features maps of FPN is 

𝑃4 = 𝐶𝑜𝑛𝑣3𝑥3(𝐶𝑜𝑛𝑣1𝑥1(𝐶4) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃5))                (13) 

𝑃3 = 𝐶𝑜𝑛𝑣3𝑥3(𝐶𝑜𝑛𝑣1𝑥1(𝐶3) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃4))                (14) 

𝑃2 = 𝐶𝑜𝑛𝑣3𝑥3(𝐶𝑜𝑛𝑣1𝑥1(𝐶2) + 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝑃4))                (15) 

Final Feature Maps: After merging the feature maps using lateral connections, each 𝑃𝑙 

undergoes a 3x3 convolution to produce the final feature maps. This process helps minimize 

aliasing artifacts that may arise from upsampling. 

𝑃𝑙 = 𝐶𝑜𝑛𝑣3𝑥3(𝑃𝑙)                    (16) 

where 𝐶𝑜𝑛𝑣3𝑥3 denotes a 3x3 convolution operation. 

Output of FPN 

The output of the Feature Pyramid Network (FPN) is a set of feature maps labeled P2, P3, P4, 

and P5. These feature maps encapsulate detailed, multi-scale information, enabling the 

subsequent RetinaNet subnets to effectively perform robust vessel detection and classification 

across various vessel sizes. 

3.3.3 Detection Subnet 

The detection subnet is applied to each level of the feature pyramid, generating outputs for 

every spatial location on the feature map. It predicts the probability of each anchor box 

containing a specific object class (vessel or non-vessel). The following steps outline the process 

involved in the detection subnet: 

Input Feature Maps: The input to the classification subnet consists of the feature maps 𝑃𝑙 

from each level 𝑙 of the FPN. 

Convolutional Layers: The classification subnet typically consists of a series of shared 

convolutional layers, followed by a final convolutional layer that outputs the class probabilities. 

Let's denote the shared convolutional layers as a series of 𝑘 convolutional operations. 

𝐻𝑙
(𝑖)

= 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣(𝐻𝑙
(𝑖−1)

, 𝑊(𝑖)) + 𝑏(𝑖)) , 𝑖 = 1,2, … , 𝑘               (17) 

Where 𝐻𝑙
(0)

= 𝑃𝑙 

Final Classification Layer: The final layer produces the class scores for each anchor box. If 

there are 𝐴 anchors per spatial location and 𝐶 object classes, the final output of the classification 

subnet has dimensions (𝐻×𝑊×𝐴×𝐶) for each level 𝑙, where 𝐻 and 𝑊 are the height and width 

of the feature map. The final classification layer applies a convolution to produce the class 

scores: 

𝐶𝑙 = 𝐶𝑜𝑛𝑣(𝐻𝑙
(𝑘)

, 𝑊𝑐) + 𝑏𝑐                   (18) 

Here, 𝐶𝑙 is the class score tensor for feature map level 𝑙, 𝑊𝑐 is the weight tensor of the final 

convolutional layer, and 𝑏𝑐 is the bias. 

Sigmoid Activation: The class scores are converted to probabilities using the sigmoid function. 

𝑃(𝑐|𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑙)                   (19) 

where 𝑃(𝑐∣𝑥) is the predicted probability for class 𝑐 given the feature map 𝑥.  

These predictions are then utilized to identify the presence and types of objects (vessels and 

non-vessels) in the input SAR images, enabling effective vessel detection and classification in 

maritime surveillance applications. 
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3.3.4 Box Regression Subnet 

The box regression subnet is tasked with predicting the coordinates of bounding boxes for 

vessels detected in the input SAR images. This subnet processes the feature maps from each 

level of the Feature Pyramid Network (FPN) to generate these bounding box predictions. The 

procedures that comprise the box regression subnet are described as follows: 

Input Feature Maps: The input to the box regression subnet consists of the feature maps 𝑃𝑙 

from each level 𝑙 of the FPN. 

Convolutional Layers: Similar to the classification subnet, the box regression subnet consists 

of a series of shared convolutional layers. Let's denote these shared convolutional operations 

as a series of 𝑘 convolutional layers. 

𝐻𝑙
(𝑖)

= 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣(𝐻𝑙
(𝑖−1)

, 𝑊(𝑖)) + 𝑏(𝑖)) , 𝑖 = 1,2, … , 𝑘               (20) 

Where 𝐻𝑙
(0)

= 𝑃𝑙 

Final Box Regression Layer: The final layer produces the bounding box coordinates for each 

anchor box. If there are 𝐴 anchors per spatial location, the final output of the box regression 

subnet has dimensions (𝐻×𝑊×𝐴×4) for each level 𝑙, where 𝐻 and 𝑊 are the height and width 

of the feature map and 4 corresponds to the 4 coordinates of the bounding box (x, y, w, h). 

Where (x, y) represents the coordinates of the center of the bounding box, and w and h denote 

the width and height of the bounding box respectively. The final box regression layer applies 

a convolution to produce the bounding box coordinates: 

𝐵𝑙 = 𝐶𝑜𝑛𝑣(𝐻𝑙
(𝑘)

, 𝑊𝑏) + 𝑏𝑏                   (21) 

Here, B𝑙 is the bounding box coordinate tensor for feature map level 𝑙, 𝑊b is the weight tensor 

of the final convolutional layer, and 𝑏b is the bias. 

In precision agriculture applications, these predictions are used to localize the objects (plants, 

weeds) identified in the input images, enabling precise and accurate weed detection and 

classification. 

3.3.5 Focal Loss 

Focal Loss is a specialized loss function employed in the RetinaNet model to tackle the 

challenge of class imbalance during training, especially in object detection tasks where there 

are significantly more background examples compared to vessel examples. Focal Loss adjusts 

the standard cross-entropy loss by incorporating a factor that reduces the loss assigned to well-

classified examples, ensuring the model concentrates more on hard-to-classify instances. In the 

context of the proposed model, the focal loss can be defined as follows: 

• pt be the model's estimated probability for the ground truth class. If 𝑦=1 (positive class), 

then 𝑝𝑡=𝑝. If 𝑦=0 (negative class), then 𝑝𝑡=1−𝑝. 

• α be the weighting factor for the positive class to address class imbalance. 

• γ be the focusing parameter that reduces the loss contribution from easy examples and 

extends the range in which an example receives a low loss. 

The focal loss FL is given by: 

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)                            (22) 

Where, 



                                  Enhanced Vessel Detection for Maritime Surveillance Using  

                                 Hyperparameter-Tuned Deep Learning on SAR Images 

 SEEJPH Volume XXV, 2024, ISSN: 2197-5248; Posted:24-10-2024 

2992 | P a g e  

 

𝑝𝑡 = {
𝑝

1 − 𝑝
𝑖𝑓 𝑦=1
𝑖𝑓 𝑦=0

 Here, p is the predicted probability of the class being 1. 

𝛼𝑡 = {
𝛼

1 − 𝛼
𝑖𝑓 𝑦=1
𝑖𝑓 𝑦=0

 Here, the weighting factor 𝛼 helps balance the importance of 

positive and negative examples. 

(1 − 𝑝𝑡)𝛾 reduces the relative loss for well-classified examples, focusing more on hard 

examples. log(𝑝𝑡) is the standard log-loss for the correct class. 

3.3.6 Non-Maximum Suppression 

Non-Maximum Suppression (NMS) is an essential post-processing step in object detection 

models, such as RetinaNet. It helps to filter out multiple detections of the same vessel by 

retaining the most confident detection and suppressing the others based on their overlap. The 

procedures followed in NMS are outlined as follows: 

Initialization 

• Let {𝑏1,𝑏2,...,𝑏𝑁} be the set of predicted bounding boxes. 

• Let {𝑠1,𝑠2,...,𝑠𝑁}be the corresponding confidence scores for these bounding boxes. 

Sorting 

• Sort the bounding boxes by their confidence scores in descending order. Assume after 

sorting, the indices are rearranged such that 𝑠1≥𝑠2≥...≥𝑠𝑁. 

Intersection over Union (IoU) 

• Compute the IoU for each pair of bounding boxes to determine their overlap. The IoU 

between two bounding boxes 𝑏𝑖 and 𝑏𝑗 is defined as: 

𝐼𝑜𝑈(𝑏𝑖, 𝑏𝑗) =
𝐴𝑟𝑒𝑎(𝑏𝑖∩𝑏𝑗)

𝐴𝑟𝑒𝑎(𝑏𝑖∪𝑏𝑗)
                             (23) 

Here, 𝐴𝑟𝑒𝑎(𝑏𝑖 ∩ 𝑏𝑗) is the area of the intersection of 𝑏𝑖 and 𝑏𝑗, and 𝐴𝑟𝑒𝑎(𝑏𝑖 ∪ 𝑏𝑗) is the 

area of their union. 

Algorithm 

• Initialize an empty list to hold the indices of the final bounding boxes:  

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = []  

• For each bounding box 𝑏𝑖 in the sorted list: 

• Compare 𝑏𝑖 with all previously selected boxes using IoU. 

• If 𝑏𝑖 has a high overlap with any selected box, discard 𝑏𝑖. 

• If 𝑏𝑖 has a low overlap with all selected boxes, add 𝑏𝑖 to the list of selected boxes: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∪ {𝑖} 

Output 

The final list of selected indices corresponds to the bounding boxes retained after applying 

NMS. In the proposed model, NMS helps to: 

• Eliminate redundant detections of the same vessel, which can occur due to the dense 

sampling of anchor boxes. 

• Ensure that only the most confident detection is kept for each vessel, enhancing the clarity 

and accuracy of the final detections. 

• Reduce the number of false positives, which is crucial for accurate vessel detection and 

classification, particularly in maritime surveillance where distinguishing between 

authorized and unauthorized vessels accurately is essential. 
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3.4 Hyperparameter Tuning using ADAM Optimizer 

Hyperparameter tuning in deep learning models like RetinaNet is crucial for optimizing 

performance. The ADAM (Adaptive Moment Estimation) optimizer is widely used due to its 

adaptive learning rate and efficient computation. It integrates the benefits of both RMSProp 

and AdaGrad algorithms. The update rules for ADAM are as follows: 

Initialize parameters: 

• Learning rate: 𝛼 

• Exponential decay rates for moment estimates: 𝛽1, 𝛽2 

• Small constant for numerical stability: 𝜖 

Initialize first moment 𝑚 and second moment 𝑣 to 0: 

𝑚0=0, 𝑣0=0 

Compute biased estimates of first and second moments:  

For each parameter 𝜃𝑡: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                  (24) 

𝜗𝑡 = 𝛽2𝜗𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                  (25) 

where 𝑔𝑡 is the gradient of the loss function at time step 𝑡. 

Compute bias-corrected first and second moments: 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡                    (26) 

𝜗𝑡̂ =
𝜗𝑡

1−𝛽2
𝑡                    (27) 

Update parameters: 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝑚̂𝑡

√𝜗̂𝑡+𝜖

                   (28) 

3.4.1 Applying ADAM in RetinaNet Hyperparameter Tuning 

• Learning Rate (𝛼): The learning rate is crucial for the convergence speed and stability of 

the training process. 

• Batch Size: The batch size impacts the stability of the training process and memory usage. 

• Epochs: The number of epochs determines how many times the model will iterate over 

the entire training dataset. It is tuned to ensure the model learns adequately without 

overfitting. 

• Anchor Scales and Aspect Ratios: These hyperparameters are specific to RetinaNet and 

determine the shapes and sizes of the anchor boxes. 

• Focal Loss Parameters (𝛾 and 𝛼): The parameters of the focal loss function need to be 

tuned to balance the contribution of easy and hard examples. 

During training, for each mini-batch of training examples, compute the gradient 𝑔𝑡 of the loss 

with respect to each model parameter 𝜃𝑡. Then, update 𝜃𝑡 using the ADAM update rules. 

Repeat this process for each epoch until the model converges. 
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By using ADAM, the model parameters 𝜃𝑡 are updated adaptively, leading to potentially faster 

and more stable convergence compared to standard SGD, especially when dealing with the 

complex, high-dimensional parameter space of RetinaNet. 

The complete proposed model is explained in the following algorithm. 

Algorithm: HPTDL-VDAC for Vessel Detection in SAR Images 

Input: SAR images, Labels, Epochs, Learning rate, Batch size 

Output: Trained HPTDL-VDAC model, Vessel predictions 

1. Initialize Model 

a. Define the backbone network for feature extraction. 

b. Construct the Feature Pyramid Network for multi-scale feature representation. 

c. Define classification and regression subnetworks for detection and bounding box 

prediction. 

2. Preprocess Data 

a. Apply Gaussian filtering to remove noise from SAR images. 

b. Normalize pixel values to the range [0, 1]. 

c. Resize images to a fixed dimension for uniformity. 

d. Split the dataset into training (80%) and testing (20%) sets. 

3. Train Model 

FOR epoch = 1 to E: 

    FOR each batch: 

a. Forward Pass: 

        i. Extract spatial features using the backbone network. 

        ii. Generate multi-scale feature maps using FPN. 

        iii. Perform classification and regression using detection subnetworks. 

b. Compute loss using focal loss for classification and smooth L1 loss for regression. 

c. Backward Pass: 

        i. Update model weights using the ADAM optimizer. 

    END FOR 

END FOR 

4. Test Model 

a. Pass test data through the trained model. 

b. Predict vessel instances and their bounding boxes. 

5. Evaluate Model 

a. Compute evaluation metrics: accuracy, precision, recall, and F1-score. 

b. Visualize performance using a confusion matrix and Precision-Recall Curve. 

6. Output 

a. Trained HPTDL-VDAC model and vessel predictions. 

4. Results and Discussion 

The proposed methodology has been rigorously evaluated using the High-Resolution SAR 

Images Dataset (HRSID), available at [18]. HRSID serves as a vital resource for vessel 

detection and segmentation in SAR images, encompassing 5604 high-resolution images and 

16951 ship instances. This dataset is highly diverse, containing images with varying resolutions 

(0.5m, 1m, 3m), polarizations, and maritime conditions such as different sea regions and 

coastal ports. Inspired by the Microsoft COCO datasets, HRSID provides a robust benchmark 

for testing and validating models for high-resolution SAR image analysis. Sample images from 

this dataset are illustrated in Figure 3. 
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Figure 3: Sample images from dataset 

For the experimental setup, the dataset was divided into two subsets. The training set, 

comprising 80% of the data (4,483 images), was used to enable the model to learn underlying 

patterns and vessel characteristics. The remaining 20% (1,121 images) constituted the testing 

set, serving to assess the model’s performance in generalizing to unseen scenarios. The 

implementation details of the HPTDL-VDAC technique are outlined in Table 1. 

Table 1: Simulation Variables 

S. No. Method Description Value 

1 HPTDL-

VDAC 

Learning Rate 1e-5 

2 Batch Size 32 

3 Epochs 100 

4 Anchor Scales [0.1,0.2,0.4] 

5 Aspect Ratios [0.5,1.0,2.0] 

6 Focal Loss Parameters 𝛾 =1.0 

𝛼 = 0.5 

The experimental outcomes of the HPTDL-VDAC methodology's training stage are 

comprehensively depicted in Figure 4. The classification performance across seven distinct 

emotional categories is represented through a confusion matrix in Figure 4(a), providing a clear 

view of the model's categorization capabilities. The model's effectiveness is further evidenced 

in Figure 4(b), where the precision-recall curves indicate robust performance metrics across 

multiple emotional classes. The receiver operating characteristic (ROC) curves presented in 

Figure 4(c) demonstrate exceptional discriminative ability across different emotion 

classifications, with notably high ROC scores. The integrated analysis of these performance 

metrics validates the HPTDL-VDAC method's exceptional capability in emotion classification 

tasks. 

 
(a) 
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(b) (c) 

Figure 4: Classification analysis of HPTDL-VDAC approach under training phase  

(a) Confusion matrix, (b) Precision-recall curve, and (c) ROC curve 

The results of the testing phase are summarized in Figure 5, which illustrates the model's 

performance from multiple perspectives. Figure 5(a) displays the confusion matrix, offering a 

comprehensive overview of the classification outcomes and the accuracy achieved across 

different vessel categories. Figure 5(b) highlights the precision-recall analysis, showcasing the 

model's ability to maintain high precision and recall values consistently. Furthermore, 

statistical evaluation confirms that the HPTDL-VDAC approach surpasses other contemporary 

methods in several performance metrics. Finally, Figure 5(c) presents the ROC analysis, 

demonstrating superior ROC values for various categories, thereby validating the model's 

reliability and effectiveness in vessel detection tasks. 

 
(a) 

 
 

(b) (c) 

Figure 5: Classification analysis of HPTDL-VDAC approach under training phase  

(a) Confusion matrix, (b) Precision-recall curve, and (c) ROC curve 
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The HPTDL-VDAC model's classification performance metrics are detailed in Table 2 and 

Figure 6. The model exhibited superior performance across evaluation metrics in both training 

and testing phases. During training, HPTDL-VDAC achieved 93.16% accuracy, 93.11% 

precision, 93.23% recall, and 93.15% F1-score. The testing phase demonstrated even stronger 

results with 95.43% accuracy, 97.61% precision, 95.54% recall, and 96.53% F1-score, 

confirming the model's robust classification capabilities. 

Table 2: Result analysis of HPTDL-VDAC approach with distinct measures   

Metrics Training Set (%) Testing Set (%) 

Accuracy 93.13 95.43 

Precision 93.11 97.61 

Recall 93.23 95.54 

F1-Score 93.15 96.53 

 

 
 

(a) (b) 

Figure 6: Result analysis of HPTDL-VDAC approach (a) Training set, (b) Testing set 

A comparative analysis presented in Table 3 and Figure 7 reveals the varying performance 

levels across different models. While HCF-QSVM and MKM-HRBF achieved lower accuracy 

rates of 83.16% and 80.48% respectively, VGG16-CNN (93.61%), GA-HMLP (92.23%), and 

EA-MLCCD (88.57%) showed improved performance. The HPTDL-VDAC model emerged 

as the top performer with 95.43% accuracy, demonstrating superior classification capabilities 

compared to all benchmark models. 

Table 3: Accuracy analysis of HDL-REFE model with existing approaches 

Methods Accuracy (%) 

HPTDL-VDAC 95.43 

VGG16-CNN 93.61 

GA- HMLP 92.23 

EA- MLCCD 88.57 

HCF-QSVM 83.16 

MKM- HRBF 80.48 

93.13

93.1193.23

93.15

Training Set (%)

Accuracy

Precision

Recall

F1-Score

95.43

97.6195.54

96.53

Testing Set (%)

Accuracy

Precision

Recall

F1-Score
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Figure 7: Accuracy analysis of HPTDL-VDAC method with existing techniques 

5. Conclusion 

The HPTDL-VDAC model presented in this paper addresses the critical challenges of maritime 

surveillance by leveraging advanced deep learning and computer vision techniques. Through 

the integration of the RetinaNet architecture, Gaussian filter-based preprocessing, and 

hyperparameter optimization with the ADAM optimizer, the system demonstrates exceptional 

accuracy and reliability in detecting and classifying vessels within SAR imagery. The 

evaluation conducted on the High-Resolution SAR Images Dataset (HRSID) underscores the 

model’s robustness and adaptability across diverse maritime scenarios, including varying sea 

conditions and cluttered backgrounds. These results not only validate the effectiveness of the 

HPTDL-VDAC framework but also establish its potential as a scalable solution for enhancing 

maritime security. 

Future work can explore extending the HPTDL-VDAC model to real-time maritime 

surveillance applications, integrating additional data sources such as optical imagery and AIS 

data for multi-modal analysis. Moreover, improving the model's computational efficiency 

through lightweight architectures or hardware acceleration can further broaden its applicability 

in resource-constrained environments. The insights gained from this research contribute 

significantly to the field of maritime surveillance and serve as a foundation for developing 

next-generation systems capable of addressing evolving challenges in global maritime 

operations. 
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