SEEIPH s

Enhanced Vessel Detection for Maritime Surveillance Using

Hyperparameter-Tuned Deep Learning on SAR Images

EEJPH Volume XXV, 2024, ISSN: 2197-5248; Posted:24-10-2024

S. Devika Priyadharshini! and K.Vadivazhagan?

Research Scholar, Department of Computer and Information Science, Faculty of Science,
Annamalai University, Tamilnadu, India, priyadharshini.devika3@gmail.com
2Assistant Professor, Department of Computer and Information Science, Faculty of Science,
Annamalai University, Tamilnadu, India, vadivazhagan.k@gmail.com

KEYWORDS

Maritime
surveillance,
Vessel detection,
Gaussian Filter,
RetinaNet, ADAM
optimizer,
Hyperparameters,
SAR images

ABSTRACT

In maritime surveillance, where ensuring the safety of shipping routes and detecting
potential threats is paramount, the need for efficient vessel detection models is
critical. Unauthorized vessels pose a significant threat to maritime security,
competing for essential resources such as shipping lanes and port access. Traditional
methods of vessel detection, such as manual monitoring or blanket radar scans, are
time-consuming, labor-intensive, and often result in overuse of resources, leading to
operational inefficiency and potential security breaches. This paper presents a
Hyperparameter-Tuned Deep Learning model for Vessel Detection and
Classification (HPTDL-VDAC) suitable for Maritime Surveillance applications. The
proposed HPTDL-VDAC system integrates advanced techniques from computer
vision and deep learning to accurately identify and classify vessels in Synthetic
Aperture Radar (SAR) images. The workflow begins with pre-processing steps
aimed at enhancing image quality and reducing noise. Specifically, a Gaussian Filter
(GF) is employed to effectively remove noise from input images, followed by
resizing to standard dimensions for subsequent analysis.

For object detection and classification, the RetinaNet model is employed. RetinaNet's
innovative architecture, featuring a focal loss mechanism, enables robust detection
of vessel instances amidst varying backgrounds and sea conditions. Notably, the
hyperparameters of the RetinaNet model are fine-tuned using the ADAM optimizer,
optimizing its performance for the specific task of vessel detection in maritime
surveillance scenarios. A thorough simulation analysis of the HPTDL-VDAC
technique was conducted using a benchmark dataset. Experimental results
demonstrate the effectiveness of the proposed system in accurately detecting vessels
in various maritime environments. This shows that it exhibits improved results
compared to recent approaches on various metrics.

1. Introduction

Maritime surveillance plays a pivotal role in safeguarding global shipping routes and
maintaining the integrity of oceanic operations. As maritime trade serves as the backbone of
the global economy, the need for advanced systems to monitor, detect, and respond to potential

threats is more pr

essing than ever. Unauthorized vessels, including those involved in illegal

fishing, smuggling, or piracy, pose significant risks to maritime security. These vessels not

only disrupt legiti

mate trade but also strain critical resources such as shipping lanes and port

access. Consequently, the development of efficient, accurate, and scalable vessel detection and
classification models is of paramount importance. Traditional methods for vessel detection
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have relied heavily on manual monitoring, radar scans, and other legacy systems. While these
approaches have proven effective in the past, they are often labor-intensive, time-consuming,
and prone to inefficiencies. For instance, blanket radar scans generate vast amounts of data that
require extensive analysis, often leading to delays in threat identification. Moreover, manual
monitoring systems are subject to human error, which can result in the misclassification of
vessels or missed detections altogether. These limitations underscore the necessity for adopting
advanced technological solutions capable of addressing the challenges of modern maritime
surveillance. In recent years, the integration of deep learning and computer vision techniques
has revolutionized various domains, including maritime surveillance. SAR imagery, with its
ability to capture high-resolution images in diverse weather and lighting conditions, has
emerged as a critical resource for vessel detection. Leveraging SAR imagery, deep learning
models can effectively identify and classify vessels with remarkable precision. However, the
effectiveness of such models hinges on the optimization of their underlying parameters and
architectures to ensure adaptability and accuracy in complex maritime environments.

1.1 Paper Contributions

This paper introduces the Hyperparameter-Tuned Deep Learning model for Vessel Detection
and Classification (HPTDL-VDAC), a novel approach designed specifically for maritime
surveillance applications. The HPTDL-VDAC system integrates cutting-edge advancements in
computer vision and deep learning to address the inherent challenges of vessel detection in
SAR imagery. The proposed workflow begins with comprehensive pre-processing techniques
aimed at enhancing image quality and mitigating noise artifacts. Specifically, a Gaussian Filter
(GF) is employed to effectively remove noise from input images, ensuring that subsequent
analysis is not compromised by extraneous elements. The pre-processed images are then
resized to standardized dimensions to facilitate consistency across the detection pipeline. For
object detection and classification, the HPTDL-VDAC framework employs the RetinaNet
model. RetinaNet’s innovative architecture, characterized by its focal loss mechanism, is
particularly well-suited for handling the class imbalance often encountered in maritime
datasets. This capability enables robust detection of vessel instances, even amidst challenging
sea conditions and varying backgrounds. To further optimize the model’s performance,
hyperparameter tuning is conducted using the ADAM optimizer. This iterative optimization
process ensures that the model is finely tuned to the specific requirements of vessel detection
in maritime surveillance scenarios. To evaluate the efficacy of the HPTDL-VDAC system,
extensive simulation analyses were conducted using a benchmark dataset. The experimental
results underscore the system’s superior performance in accurately detecting vessels across
diverse maritime environments. When compared to recent approaches, the HPTDL-VDAC
model demonstrated significant improvements across various performance metrics,
highlighting its potential as a transformative solution for maritime surveillance applications.
This paper builds upon existing research in the field, including notable advancements in SAR-
based vessel detection and deep learning methodologies. For instance, recent studies have
demonstrated the utility of SAR imagery in capturing fine-grained details of maritime scenes
[1, 2]. Similarly, the application of RetinaNet in object detection tasks has been extensively
validated in prior work [3]. By integrating these established techniques and augmenting them
with hyperparameter tuning, the HPTDL-VDAC system offers a robust, scalable, and efficient
solution for contemporary maritime surveillance challenges.

In the sections that follow, we delve deeper into the technical underpinnings of the HPTDL-

VDAC framework, providing detailed insights into its architecture, implementation, and
performance evaluation. Through this exploration, we aim to underscore the transformative
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potential of hyperparameter-tuned deep learning models in enhancing maritime security and
operational efficiency.

2. Related works

Y. Liu et al. [4] addresses the challenges posed by the complex maritime environments
captured in Sentinel-1 SAR imagery, such as varying sea states and cluttered backgrounds. The
authors combine multiple deep learning models to enhance detection accuracy and resilience,
showcasing their method's superiority over single-model approaches. The experimental results
demonstrate significant improvements in detection performance, making the proposed
ensemble model a valuable contribution to the field of remote sensing and maritime
surveillance. X. Zhang et al. [5] presents a methodical exploration of hyperparameter
optimization to enhance vessel detection in SAR imagery. The authors employ advanced tuning
techniques to refine model performance, addressing challenges such as noise, cluttered
backgrounds, and varying sea conditions. W. Bao et al. [6] propose innovative pretraining
techniques that leverage complementary learning methods to enhance the model's performance
in detecting ships in complex environments. They combine different data augmentation
strategies and pretrained feature extractors to address challenges posed by the diverse and
cluttered nature of SAR images. S. P. Tiwari et al. [7] explores the application of Convolutional
Neural Networks for the automated monitoring of marine vessels. The authors propose an
effective CNN-based framework designed to classify and track vessels in oceanic
environments. The paper highlights the advantages of deep learning in overcoming challenges
such as varying lighting conditions, vessel sizes, and environmental noise. J. Wang et al. [8]
introduces an advanced method for optimizing hyperparameters in object detection models
using an enhanced genetic algorithm. The authors present a novel approach that improves the
traditional genetic algorithm by incorporating more efficient search strategies and adaptation
mechanisms to better explore the hyperparameter space. X. Zhang et al. [9] provides a
comprehensive review of the advancements in deep learning techniques for ship detection in
SAR imagery. The authors trace the evolution of methods from traditional image processing
techniques to more recent deep learning approaches, emphasizing the significant improvements
in detection accuracy, robustness, and efficiency brought about by convolutional neural
networks and other deep architectures. J. Chen et al. [10] offers an in-depth exploration of deep
learning methodologies applied to ship detection in SAR imagery. The authors discuss the
challenges of training deep models with SAR data, including data scarcity and class imbalance,
and propose solutions like data augmentation and transfer learning.

Y. Ren et al. [11] presents a deep learning model designed to accurately estimate the size of
ships in Sentinel-1 SAR images. The authors address common challenges in SAR ship
detection, such as varying ship orientations, environmental noise, and limited resolution. Z.
Hou et al. [12] offers a novel integrated approach for ship detection and recognition in Synthetic
Aperture Radar images using deep learning techniques. The authors propose a dual-stage
framework that first detects ships and then classifies them, effectively combining detection and
recognition tasks to improve the overall performance of ship identification in SAR imagery. Y.
Chen et al. [13] introduces an end-to-end deep CNN model designed for ship detection in
complex SAR images. The deep CNN architecture is optimized to deal with the challenges
posed by complex scenes, including background noise, variable ship sizes, and different
orientations. This paper contributes to advancing the field of SAR image analysis by offering
a robust and scalable solution for end-to-end ship detection. F. Paolo et al. [14] explores the
use of SAR imagery combined with deep learning techniques for the efficient detection of
maritime objects. The authors propose a deep learning framework that effectively identifies
ships and other maritime objects in SAR images, addressing key challenges such as clutter, low
resolution, and environmental factors that typically complicate detection. H. Su et al. [15]
presents an enhanced version of the RetinaNet model for high-resolution ship detection in SAR

2985 |Page



Enhanced Vessel Detection for Maritime Surveillance Using
Hyperparameter-Tuned Deep Learning on SAR Images
&Eﬂ’d SEEJPH Volume XXV, 2024, ISSN: 2197-5248; Posted:24-10-2024

images. By modifying the original RetinaNet architecture and incorporating advanced
techniques such as feature fusion and multi-scale processing, the model is able to more
effectively identify ships in SAR images with high precision. R. Wang et al. [16] introduces a
novel approach to ship detection in SAR images using lightweight neural networks designed
for real-time applications. The paper emphasizes the importance of optimizing network size
and complexity to enable faster processing, making the approach suitable for large-scale
surveillance systems with limited resources. H. Su et al. [17] introduces an enhanced version
of the RetinaNet model, termed RetinaNet-Plus, for ship detection in high-resolution SAR
images. The authors propose improvements to the standard RetinaNet architecture,
incorporating techniques to better handle the challenges of high-resolution SAR imagery, such
as ship size variability, complex backgrounds, and environmental noise. RetinaNet-Plus is
designed to enhance the detection accuracy and robustness, particularly in challenging
maritime scenarios.

3. The Proposed Model

The present research introduces a novel HPTDL-VDAC technique designed to effectively
identified the wvessels in maritime surveillance. This technique incorporates several
subprocesses, including GF-based preprocessing, RetinaNet-based object detection, and
ADAM-based parameter optimization. The proposed model successfully identifies and
classifies vessels, thereby enhancing maritime security and operational efficiency. Figure 1
provides an overview of the entire process of the HPTDL-VDAC technique.
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Figure 1: Overall process of HPTDL-VDAC technique

3.1 Image Pre-processing

Image pre-processing is a pivotal step in preparing raw SAR image data for subsequent analysis
and interpretation. It involves various operations aimed at enhancing image quality, reducing
noise, and standardizing data for further processing. This step is essential in vessel detection
systems to ensure the accuracy and reliability of the detection process. In the proposed model,
pre-processing comprises two essential processes: noise removal using a Gaussian Filter, and
subsequent image resizing to facilitate further processing.
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3.1.1 Noise Removal using GF technique

Initially, a Gaussian filter approach is employed to eliminate noise present in SAR images.
Noise removal is a critical image pre-processing technique aimed at enhancing the features of
images corrupted by noise. The Gaussian filter operates by convolving the image with a
Gaussian kernel, which effectively smooths out high-frequency noise components while
preserving the underlying structures and edges in the image.

The Gaussian kernel is a matrix used for the convolution operation. It is defined by the
Gaussian function:

2

1 x2+y
o2 exp(_ 202 ) (1)

2T

G(x,y) =

Where:
G(x,y) represents the value of the Gaussian kernel at position (x,y)

o is the standard deviation of the Gaussian distribution,
x and yare the spatial coordinates within the kernel.

The convolution process entails moving the Gaussian kernel across the image and calculating
the weighted sum of pixel values within the kernel's window at each specific location. This can
be expressed as follows:

Ismoothea(%,y) = ?:—k Z?:—kl(x —Ly—/.63GJ) 2

Where:
I(x,y) is the original pixel intensity at position (x,y)

G(i,j) is the value of the Gaussian kernel at position (i,j)

k is the size of the Gaussian kernel

After the Gaussian filter is applied, the high-frequency noise components in the SAR images
are reduced, resulting in a smoother and clearer image. This noise reduction greatly improves
image quality and enhances the effectiveness of subsequent processing tasks, such as vessel
identification and detection.

3.1.2 Image Resizing

Image resizing is carried out to standardize the dimensions of input images, ensuring
uniformity across the dataset and enabling efficient processing. This involves adjusting the
image to a predetermined width and height while maintaining the aspect ratio. The process of
image resizing can be represented as follows:

Resized_Image(i) = resize(Original_Image(i), width, height) (3)
Where Original_Image(i) represents the it" original image, and width and height denote the
desired dimensions of the resized image.

3.2 Dataset Splitting

Dataset splitting is an essential step in machine learning and statistical modeling, where the
available dataset is divided into separate subsets for training and testing. The training set is
used to train the model, while the testing set is used to evaluate the model's performance and
assess its generalization to unseen data. Let's denote the entire dataset as DD containing NN
samples. The dataset splitting process can be represented as follows:

Training Set(Derain) = {(x;, ¥} "iri @)
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Testing Set(Dyest) = {(xi, ¥} eyt (5)
Dataset splitting is crucial for assessing how well our vessel detection model generalizes to
unseen SAR images. By evaluating the model on a separate testing set, we obtain an unbiased
estimate of its performance. Training a model on the entire dataset without validation or testing
can lead to overfitting, where the model learns to memorize the training data instead of
capturing underlying patterns. Dataset splitting helps mitigate overfitting by providing a
separate testing set for evaluation. This is essential for deploying the model in real-world
maritime surveillance applications.

3.3 Optimized RetinaNet based Object Detection

This manuscript employs the RetinaNet technique for the effective detection of vessels in SAR
images. The RetinaNet deep learning architecture is a sophisticated model tailored for high-
accuracy object detection, making it ideal for vessel detection and classification in maritime
surveillance. The process begins with input SAR images, which are passed through the
backbone network, typically a pre-trained ResNet-50 or ResNet-101. This network extracts
hierarchical features from the images at various levels of abstraction. These features are then
fed into a Feature Pyramid Network (FPN), which constructs a multi-scale feature pyramid,
enabling the detection of vessels at different sizes and scales. The model includes two
specialized subnets: the classification subnet and the box regression subnet. The classification
subnet processes the feature maps to predict the probability of each anchor box containing a
vessel or background. The box regression subnet predicts the coordinates of the bounding
boxes around the detected objects. The final output of RetinaNet consists of class probabilities
and precise bounding box coordinates for each detected vessel, enabling accurate and effective
maritime surveillance by allowing for targeted interventions. The entire detection process is
depicted in Figure 2.

Figure 2: RetinaNet Model for Vessel Detection

3.3.1 Backbone Network

The backbone network in the RetinaNet model is typically a pre-trained convolutional neural
network, such as ResNet-50 or ResNet-101. This network is responsible for extracting
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hierarchical feature maps from the input SAR image. In this manuscript, we utilize ResNet-50
as the backbone network of the proposed model. The backbone network processes an input
image I through a series of convolutional layers, which can be described as follows:

e The input image I is first convolved with a set of filters to produce the initial feature
map Fy:

Fy = Conv(I,W;) + b, (6)
where W, and b, are the weights and biases of the initial convolutional layer.

e This feature map F, is then passed through a non-linear activation function (typically
ReLU) and pooling layer:

Fy = ReLU(F,) (7
Fy = MaxPool(F) 8)

e The feature maps are then processed through a series of residual blocks. Each residual
block is composed of multiple convolutional layers with skip connections, facilitating
easier gradient flow. For a residual block at layer [:

Fl = ReLU(COnU(Fl_l, Wl) + bl (9)

Here, F;_; is the input feature map to the [-th residual block, and W; and b, are the weights
and biases for the convolutions within the block.

e The output of the residual block is added to its input through a skip connection:

Fl = Fl + Fl—l (10)

e The backbone network produces feature maps from various layers, typically after each
stage of residual blocks. These feature maps correspond to different levels of the
network, capturing diverse spatial resolutions and feature complexities. The feature
pyramid in the FPN is constructed using these feature maps.

3.3.2 Feature Pyramid Network

The Feature Pyramid Network (FPN) in the RetinaNet model creates a multi-scale feature
representation from the outputs of the backbone network, facilitating the robust detection of
vessels of various sizes. The feature maps extracted from the backbone network are denoted as
Ca, Cs, Cs4, and Cs. These feature maps correspond to different levels of the backbone network,
with C having the highest spatial resolution and Cs having the lowest.

Top-Down Pathway: The Feature Pyramid Network (FPN) initiates a top-down pathway,
where higher-level feature maps are upsampled and combined with lower-level feature maps.
This process enhances the ability to detect vessels of various sizes effectively.

Lateral Connections: Lateral connections are utilized to merge the upsampled feature maps
with the corresponding feature maps from the backbone network, effectively combining multi-
scale information for improved vessel detection.

Initial Coarser Feature Map

Ps = Convlx1(Cs) (11)
Here, Conv1x1 denotes a 1x1 convolution used to reduce the number of channels.
Subsequent Feature Maps

For levels P where [=4,3,2:

P, = Convlx1(C;) + UpSample(Pyy1) (12)
Conv1x1(C,;): 1x1 convolution to reduce the number of channels in C..

UpSample(P,,,): Upsampling the coarser feature map Pi+1 by a factor of 2.
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The construction of the finer features maps of FPN is

P, = Conv3x3(Convix1(C,) + UpSample(Ps)) (13)
P; = Conv3x3(Convlx1(C;) + UpSample(P,)) (14)
P, = Conv3x3(Convlx1(C,) + UpSample(P,)) (15)

Final Feature Maps: After merging the feature maps using lateral connections, each P:
undergoes a 3x3 convolution to produce the final feature maps. This process helps minimize
aliasing artifacts that may arise from upsampling.

P, = Conv3x3(P;) (16)
where Conv3x3 denotes a 3x3 convolution operation.

Output of FPN

The output of the Feature Pyramid Network (FPN) is a set of feature maps labeled P2, Ps, Pa,
and Ps. These feature maps encapsulate detailed, multi-scale information, enabling the
subsequent RetinaNet subnets to effectively perform robust vessel detection and classification
across various vessel sizes.

3.3.3 Detection Subnet

The detection subnet is applied to each level of the feature pyramid, generating outputs for
every spatial location on the feature map. It predicts the probability of each anchor box
containing a specific object class (vessel or non-vessel). The following steps outline the process
involved in the detection subnet:

Input Feature Maps: The input to the classification subnet consists of the feature maps P:
from each level [ of the FPN.

Convolutional Layers: The classification subnet typically consists of a series of shared
convolutional layers, followed by a final convolutional layer that outputs the class probabilities.
Let's denote the shared convolutional layers as a series of k convolutional operations.

1 = ReLU (Conv(H™P,w®) +p0),i =12, .k (17)

Where Hl(o) =P

Final Classification Layer: The final layer produces the class scores for each anchor box. If
there are A anchors per spatial location and C object classes, the final output of the classification
subnet has dimensions (HxWxAxC) for each level [, where H and W are the height and width
of the feature map. The final classification layer applies a convolution to produce the class
scores:

¢, = Conv(H{,W,) + b, (18)
Here, C is the class score tensor for feature map level [, W. is the weight tensor of the final
convolutional layer, and b is the bias.

Sigmoid Activation: The class scores are converted to probabilities using the sigmoid function.
P(c|x) = Sigmoid(C;) (19)
where P(c|x) is the predicted probability for class ¢ given the feature map x.

These predictions are then utilized to identify the presence and types of objects (vessels and
non-vessels) in the input SAR images, enabling effective vessel detection and classification in
maritime surveillance applications.
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3.3.4 Box Regression Subnet

The box regression subnet is tasked with predicting the coordinates of bounding boxes for
vessels detected in the input SAR images. This subnet processes the feature maps from each
level of the Feature Pyramid Network (FPN) to generate these bounding box predictions. The
procedures that comprise the box regression subnet are described as follows:

Input Feature Maps: The input to the box regression subnet consists of the feature maps P:
from each level [ of the FPN.

Convolutional Layers: Similar to the classification subnet, the box regression subnet consists
of a series of shared convolutional layers. Let's denote these shared convolutional operations
as a series of k convolutional layers.

H = ReLU (Conv(H{ ™, w®) +b®),i=12,.. .k (20)

Where Hl(o) =P

Final Box Regression Layer: The final layer produces the bounding box coordinates for each
anchor box. If there are A anchors per spatial location, the final output of the box regression
subnet has dimensions (HxWxAx4) for each level [, where H and W are the height and width
of the feature map and 4 corresponds to the 4 coordinates of the bounding box (x, y, w, h).
Where (X, y) represents the coordinates of the center of the bounding box, and w and h denote
the width and height of the bounding box respectively. The final box regression layer applies
a convolution to produce the bounding box coordinates:

B, = Conv(H, W, ) + b, (21)
Here, B is the bounding box coordinate tensor for feature map level [, Wy is the weight tensor
of the final convolutional layer, and by, is the bias.

In precision agriculture applications, these predictions are used to localize the objects (plants,
weeds) identified in the input images, enabling precise and accurate weed detection and
classification.

3.3.5 Focal Loss

Focal Loss is a specialized loss function employed in the RetinaNet model to tackle the
challenge of class imbalance during training, especially in object detection tasks where there
are significantly more background examples compared to vessel examples. Focal Loss adjusts
the standard cross-entropy loss by incorporating a factor that reduces the loss assigned to well-
classified examples, ensuring the model concentrates more on hard-to-classify instances. In the
context of the proposed model, the focal loss can be defined as follows:

e p: be the model's estimated probability for the ground truth class. If y=1 (positive class),
then p:=p. If y=0 (negative class), then p:=1-p.

e a be the weighting factor for the positive class to address class imbalance.

ey be the focusing parameter that reduces the loss contribution from easy examples and
extends the range in which an example receives a low loss.

The focal loss FL is given by:

FL(py) = —a.(1 —p.)" log(py) (22)
Where,
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D = {1 fp i; ﬁ(l) Here, p is the predicted probability of the class being 1.
a; = {1 iz aﬁ;ﬁé Here, the weighting factor a helps balance the importance of
positive and negative examples.

(1 — py)Y reduces the relative loss for well-classified examples, focusing more on hard
examples. log(p;) is the standard log-loss for the correct class.

3.3.6 Non-Maximum Suppression

Non-Maximum Suppression (NMS) is an essential post-processing step in object detection
models, such as RetinaNet. It helps to filter out multiple detections of the same vessel by
retaining the most confident detection and suppressing the others based on their overlap. The
procedures followed in NMS are outlined as follows:

Initialization
o Let {b1,b>,....bn} be the set of predicted bounding boxes.

o Let {s1,s2,...,sn}be the corresponding confidence scores for these bounding boxes.
Sorting

e Sort the bounding boxes by their confidence scores in descending order. Assume after
sorting, the indices are rearranged such that s1>s>>...>sn.

Intersection over Union (loU)

o Compute the loU for each pair of bounding boxes to determine their overlap. The loU

between two bounding boxes b: and b; is defined as:
IOU(bi, b]) =

Area(binbj)
Area(b;Ubj) (23)

Here, Area(b; N b;) is the area of the intersection of bi and bj, and Area(b; U b;) is the
area of their union.

Algorithm
« Initialize an empty list to hold the indices of the final bounding boxes:
Selected =[]
e For each bounding box b: in the sorted list:
o Compare b; with all previously selected boxes using loU.
o If bi has a high overlap with any selected box, discard b:.

o If bi has a low overlap with all selected boxes, add b; to the list of selected boxes:
Selected = Selected U {i}
Output

The final list of selected indices corresponds to the bounding boxes retained after applying
NMS. In the proposed model, NMS helps to:

o Eliminate redundant detections of the same vessel, which can occur due to the dense
sampling of anchor boxes.

o Ensure that only the most confident detection is kept for each vessel, enhancing the clarity
and accuracy of the final detections.

e Reduce the number of false positives, which is crucial for accurate vessel detection and
classification, particularly in maritime surveillance where distinguishing between
authorized and unauthorized vessels accurately is essential.
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3.4 Hyperparameter Tuning using ADAM Optimizer

Hyperparameter tuning in deep learning models like RetinaNet is crucial for optimizing
performance. The ADAM (Adaptive Moment Estimation) optimizer is widely used due to its
adaptive learning rate and efficient computation. It integrates the benefits of both RMSProp
and AdaGrad algorithms. The update rules for ADAM are as follows:

Initialize parameters:
e Learning rate: a

o Exponential decay rates for moment estimates: S1, 32

e Small constant for numerical stability: e

Initialize first moment m and second moment v to O:

mo=0, vp=0
Compute biased estimates of first and second moments:
For each parameter 6::
my = fime_1 + (1 — B1)ge (24)
O = P91 + (1 = B2)g¢ (25)
where g, is the gradient of the loss function at time step t.

Compute bias-corrected first and second moments:

e = (26)
& 9
%= h (27)

Update parameters:

Orv1 =0 — e (28)

3.4.1 Applying ADAM in RetinaNet Hyperparameter Tuning

« Learning Rate (a): The learning rate is crucial for the convergence speed and stability of
the training process.

« Batch Size: The batch size impacts the stability of the training process and memory usage.

e Epochs: The number of epochs determines how many times the model will iterate over
the entire training dataset. It is tuned to ensure the model learns adequately without
overfitting.

e Anchor Scales and Aspect Ratios: These hyperparameters are specific to RetinaNet and
determine the shapes and sizes of the anchor boxes.

o Focal Loss Parameters (y and a): The parameters of the focal loss function need to be
tuned to balance the contribution of easy and hard examples.

During training, for each mini-batch of training examples, compute the gradient g: of the loss

with respect to each model parameter 8:. Then, update 8¢ using the ADAM update rules.
Repeat this process for each epoch until the model converges.
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By using ADAM, the model parameters 6: are updated adaptively, leading to potentially faster
and more stable convergence compared to standard SGD, especially when dealing with the
complex, high-dimensional parameter space of RetinaNet.

The complete proposed model is explained in the following algorithm.
Algorithm: HPTDL-VDAC for Vessel Detection in SAR Images
Input: SAR images, Labels, Epochs, Learning rate, Batch size
Output: Trained HPTDL-VDAC model, Vessel predictions

1. Initialize Model
a. Define the backbone network for feature extraction.
b. Construct the Feature Pyramid Network for multi-scale feature representation.
c. Define classification and regression subnetworks for detection and bounding box
prediction.
2. Preprocess Data
a. Apply Gaussian filtering to remove noise from SAR images.
b. Normalize pixel values to the range [0, 1].
c. Resize images to a fixed dimension for uniformity.
d. Split the dataset into training (80%) and testing (20%) sets.

3. Train Model
FOR epoch =1 to E:
FOR each batch:
a. Forward Pass:
i. Extract spatial features using the backbone network.
ii. Generate multi-scale feature maps using FPN.
iii. Perform classification and regression using detection subnetworks.
b. Compute loss using focal loss for classification and smooth L1 loss for regression.
c. Backward Pass:
i. Update model weights using the ADAM optimizer.
END FOR
END FOR
4. Test Model
a. Pass test data through the trained model.
b. Predict vessel instances and their bounding boxes.
5. Evaluate Model
a. Compute evaluation metrics: accuracy, precision, recall, and F1-score.
b. Visualize performance using a confusion matrix and Precision-Recall Curve.
6. Output
a. Trained HPTDL-VDAC model and vessel predictions.

4. Results and Discussion

The proposed methodology has been rigorously evaluated using the High-Resolution SAR
Images Dataset (HRSID), available at [18]. HRSID serves as a vital resource for vessel
detection and segmentation in SAR images, encompassing 5604 high-resolution images and
16951 ship instances. This dataset is highly diverse, containing images with varying resolutions
(0.5m, 1m, 3m), polarizations, and maritime conditions such as different sea regions and
coastal ports. Inspired by the Microsoft COCO datasets, HRSID provides a robust benchmark
for testing and validating models for high-resolution SAR image analysis. Sample images from
this dataset are illustrated in Figure 3.
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Figure 3: Sample images from dataset

For the experimental setup, the dataset was divided into two subsets. The training set,
comprising 80% of the data (4,483 images), was used to enable the model to learn underlying
patterns and vessel characteristics. The remaining 20% (1,121 images) constituted the testing
set, serving to assess the model’s performance in generalizing to unseen scenarios. The
implementation details of the HPTDL-VDAC technique are outlined in Table 1.

Table 1: Simulation Variables

S. No. | Method Description Value

1 HPTDL- Learning Rate le-5

2 VDAC Batch Size 32

3 Epochs 100

4 Anchor Scales [0.1,0.2,0.4]

5 Aspect Ratios [0.5,1.0,2.0]

6 Focal Loss Parameters y =1.0
a=05

The experimental outcomes of the HPTDL-VDAC methodology's training stage are
comprehensively depicted in Figure 4. The classification performance across seven distinct
emotional categories is represented through a confusion matrix in Figure 4(a), providing a clear
view of the model's categorization capabilities. The model's effectiveness is further evidenced
in Figure 4(b), where the precision-recall curves indicate robust performance metrics across
multiple emotional classes. The receiver operating characteristic (ROC) curves presented in
Figure 4(c) demonstrate exceptional discriminative ability across different emotion
classifications, with notably high ROC scores. The integrated analysis of these performance
metrics validates the HPTDL-VDAC method's exceptional capability in emotion classification
tasks.
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Figure 4: Classification analysis of HPTDL-VDAC approach under training phase
(a) Confusion matrix, (b) Precision-recall curve, and (c) ROC curve

The results of the testing phase are summarized in Figure 5, which illustrates the model's
performance from multiple perspectives. Figure 5(a) displays the confusion matrix, offering a
comprehensive overview of the classification outcomes and the accuracy achieved across
different vessel categories. Figure 5(b) highlights the precision-recall analysis, showcasing the
model's ability to maintain high precision and recall values consistently. Furthermore,
statistical evaluation confirms that the HPTDL-VDAC approach surpasses other contemporary
methods in several performance metrics. Finally, Figure 5(c) presents the ROC analysis,
demonstrating superior ROC values for various categories, thereby validating the model's
reliability and effectiveness in vessel detection tasks.
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Figure 5: Classification analysis of HPTDL-VDAC approach under training phase
(@) Confusion matrix, (b) Precision-recall curve, and (c) ROC curve
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The HPTDL-VDAC model's classification performance metrics are detailed in Table 2 and
Figure 6. The model exhibited superior performance across evaluation metrics in both training
and testing phases. During training, HPTDL-VDAC achieved 93.16% accuracy, 93.11%
precision, 93.23% recall, and 93.15% F1-score. The testing phase demonstrated even stronger
results with 95.43% accuracy, 97.61% precision, 95.54% recall, and 96.53% F1-score,
confirming the model's robust classification capabilities.

Table 2: Result analysis of HPTDL-VDAC approach with distinct measures

Metrics Training Set (%) Testing Set (%)
Accuracy 93.13 95.43
Precision 93.11 97.61
Recall 93.23 95.54
F1-Score 93.15 96.53
Training Set (%) Testing Set (%)
= Accuracy = Accuracy
93.15 Precision 96.53 Precision
Recall
9323 9311 Recall 9554  97.61
F1-Score
F1-Score
(a) (b)

Figure 6: Result analysis of HPTDL-VDAC approach (a) Training set, (b) Testing set

A comparative analysis presented in Table 3 and Figure 7 reveals the varying performance
levels across different models. While HCF-QSVM and MKM-HRBF achieved lower accuracy
rates of 83.16% and 80.48% respectively, VGG16-CNN (93.61%), GA-HMLP (92.23%), and
EA-MLCCD (88.57%) showed improved performance. The HPTDL-VDAC model emerged
as the top performer with 95.43% accuracy, demonstrating superior classification capabilities
compared to all benchmark models.

Table 3: Accuracy analysis of HDL-REFE model with existing approaches

Methods Accuracy (%)
HPTDL-VDAC 95.43
VGG16-CNN 93.61
GA- HMLP 92.23
EA- MLCCD 88.57
HCF-QSVM 83.16
MKM- HRBF 80.48
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Figure 7: Accuracy analysis of HPTDL-VDAC method with existing techniques
5. Conclusion

The HPTDL-VDAC model presented in this paper addresses the critical challenges of maritime
surveillance by leveraging advanced deep learning and computer vision techniques. Through
the integration of the RetinaNet architecture, Gaussian filter-based preprocessing, and
hyperparameter optimization with the ADAM optimizer, the system demonstrates exceptional
accuracy and reliability in detecting and classifying vessels within SAR imagery. The
evaluation conducted on the High-Resolution SAR Images Dataset (HRSID) underscores the
model’s robustness and adaptability across diverse maritime scenarios, including varying sea
conditions and cluttered backgrounds. These results not only validate the effectiveness of the
HPTDL-VDAC framework but also establish its potential as a scalable solution for enhancing
maritime security.

Future work can explore extending the HPTDL-VDAC model to real-time maritime
surveillance applications, integrating additional data sources such as optical imagery and AIS
data for multi-modal analysis. Moreover, improving the model's computational efficiency
through lightweight architectures or hardware acceleration can further broaden its applicability
in resource-constrained environments. The insights gained from this research contribute
significantly to the field of maritime surveillance and serve as a foundation for developing
next-generation systems capable of addressing evolving challenges in global maritime
operations.
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