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ABSTRACT:  

 

Parkinson’s disease (PD) is a progressive neurodegenerative condition that frequently 

remains undiagnosed in its early stages due to subtle and overlapping symptoms. This 

study presents an innovative approach that integrates advanced deep learning 

architectures, optimization techniques, and machine learning models to enhance the 

accuracy of early PD detection. By utilizing performance metrics for model 

evaluation and comparison, the research identifies the most effective methods for 

achieving precise and reliable diagnoses. The proposed framework exhibits 

exceptional performance in differentiating early-stage Parkinson’s cases from healthy 

individuals, contributing to improved clinical decision-making and enabling timely 

interventions. Experimental results provide to prove the proposed frame work 

techniques using ML and DL with better optimizations and its performance metrics.  

 

 

1. Introduction  

 

Parkinson’s disease (PD) is a progressive neurological disorder that is often challenging to 

detect in its initial stages due to subtle and overlapping clinical features. This study proposes 

an advanced framework integrating deep learning architectures, optimization strategies, and 

machine learning models to enhance early detection accuracy. The research evaluates the 

models using performance metrics to identify optimal solutions, demonstrating the 

framework’s effectiveness in distinguishing early-stage PD from healthy individuals and 

supporting timely diagnosis and intervention. 

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder, affecting 

millions worldwide. Early detection is critical for managing the disease, slowing its 

progression, and improving patient quality of life. However, early-stage PD diagnosis 

remains challenging due to subtle motor and non-motor symptoms, which often overlap with 

mailto:uvaranikrish99@gmail.com
mailto:drmuruganapcs@gmail.com


 Early Detection of Parkinson’s Disease Using Novel Deep Learning Frameworks 

Optimized with Advanced Techniques and Machine Learning Models Evaluated 

through Performance Metrics 

SEEJPHVolume XXV , S1 2024, ISSN: 2197-5248;Posted:05-11-2024 
 

2895 | P a g e  
 

other neurological conditions. Leveraging computational models such as machine learning 

(ML) and deep learning (DL) can aid in the accurate and timely diagnosis of PD. 

Recent advances in machine learning have significantly contributed to PD detection. Studies 

have shown that support vector machines (SVMs) and random forests (RFs) effectively 

classify PD-related data based on voice, handwriting, and gait patterns, achieving notable 

accuracy rates (Das et al., 2021; Gupta et al., 2020). Deep learning models, particularly 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have 

demonstrated superior performance in extracting relevant features from complex datasets 

(Wang et al., 2021; Shen et al., 2022). 

Optimization techniques further enhance the predictive capabilities of ML and DL models. 

Particle swarm optimization (PSO) and genetic algorithms (GA) are widely used to fine-tune 

hyperparameters, improving model accuracy and robustness (Singh et al., 2020; Ahmed et al., 

2021). Combining these techniques with deep learning frameworks has led to breakthroughs 

in medical diagnostics, including PD detection (Zhang et al., 2022; Kumar et al., 2021). 

 

2. Literature Review 

 

Performance metrics such as accuracy, sensitivity, specificity, and area under the curve 

(AUC) are critical for evaluating and comparing models. Studies underscore the importance 

of robust metrics in validating the reliability of models for clinical applications (Patel et al., 

2020; Lin et al., 2021). Integrating these metrics within optimization and machine learning 

frameworks ensures the development of clinically viable tools.A novel approach to early PD 

detection by combining advanced deep learning architectures with optimization techniques 

and machine learning models. The framework’s performance is evaluated using multiple 

metrics to identify optimal methods, offering a pathway to improved diagnostic accuracy and 

early intervention. 

The application of artificial intelligence in healthcare has seen a surge in recent years, with 

deep learning (DL) and machine learning (ML) playing pivotal roles in disease diagnosis and 

prognosis. Novel DL and ML techniques have demonstrated exceptional capabilities in 

handling complex datasets, extracting meaningful patterns, and improving diagnostic 

accuracy. These advanced approaches have been further enhanced by incorporating robust 

performance metrics, ensuring reliable and reproducible results. 

Deep learning models, particularly convolutional neural networks (CNNs) and long short-

term memory (LSTM) networks, have achieved remarkable success in image and sequential 

data analysis (Zhang & Li, 2021; Kumar et al., 2022). Similarly, machine learning algorithms 

such as support vector machines (SVMs) and ensemble methods like random forests (RFs) 

have proven effective for classification tasks across various medical datasets (Patel et al., 

2020; Singh & Sharma, 2021).The integration of performance metrics, including accuracy, 

precision, recall, F1-score, and area under the curve (AUC), is essential for evaluating these 

models (Ahmed & Gupta, 2021; Lin et al., 2021). Studies have shown that optimization 

techniques further enhance model performance by fine-tuning hyperparameters, leading to 

improved predictive capabilities (Wang & Chen, 2022; Ali & Siddiqui, 2021). 

Data mining serves as a powerful tool for analyzing large, pre-existing databases to uncover 

previously unknown and valuable insights. In the context of chronic disease data, each row 

represents a specific location, while the attributes encompass topics, questions, data values, 

and confidence limits (both low and high). Data is utilized for training and testing purposes 

across five classification algorithms. This paper evaluates the performance and accuracy of 
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five decision tree algorithms, demonstrating that the M5P decision tree approach outperforms 

the others in building an effective predictive model (Rajesh et al., 2021). 

Each row is an instance characterized by attribute values such as Outlook, Temperature, 

Humidity, Windy, and the Boolean PlayGolf class variable. The dataset is used for training 

purposes and analyzed using seven classification algorithms. This study evaluates the 

performance and accuracy of various decision tree-based approaches implemented in the 

WEKA tool to identify key parameters of the tree structure. The algorithms include J48, 

Random Tree (RT), Decision Stump (DS), Logistic Model Tree (LMT), Hoeffding Tree (HT), 

Reduced Error Pruning Tree (REP), and Random Forest (RF). Experimental results show that 

among these algorithms, the Random Tree achieves the highest accuracy of 85.714%  (Rajesh 

et al., 2021). 

The evaluation of AI methodologies, particularly in predictive modeling, hinges on the use of 

robust performance metrics, including accuracy, precision, recall, F1-score, and the area 

under the curve (AUC), which collectively form a comprehensive framework for assessing 

and benchmarking the predictive capabilities of diverse models; although traditional machine 

learning (ML) techniques have yielded commendable outcomes in certain scenarios, the 

integration of deep learning advancements, particularly those enhanced by optimization 

strategies, has significantly elevated the accuracy and efficiency of classification tasks, such 

as Parkinson’s disease detection, while simultaneously demonstrating the transformative 

potential of ML in domains like healthcare, finance, and engineering by enabling the analysis 

of extensive datasets, the extraction of meaningful patterns, and the generation of reliable 

predictions, all contingent upon rigorous evaluation frameworks that ensure the models’ 

applicability and reliability in real-world settings (Rashid et al., 2022; Bishop, 2006). 

Deep learning model, named CNN-BiGRU, leverages the combined strengths of 

Convolutional Neural Networks (CNNs) and Bidirectional Gated Recurrent Units (BiGRUs). 

CNNs are highly effective in capturing spatial features from structured inputs, while BiGRUs 

excel at learning temporal dependencies from sequential datasets. This hybrid approach 

ensures the model is versatile and capable of processing a wide range of static and dynamic 

PD-related data (LeCun et al., 2015; Cho et al., 2014). To further improve the model's 

performance, we propose Dynamic Gradient Regularization (DGR). This optimization 

method introduces a flexible regularization term in the loss function that adapts based on the 

magnitude of gradients. By reducing the sensitivity to noisy gradients, DGR ensures smooth 

convergence and more effective learning. Unlike conventional optimizers such as Adam, 

DGR fine-tunes learning rates layer-by-layer, optimizing the training process and reducing 

convergence time (Kingma & Ba, 2015). 

 

3. Backgrounds and Methodologies  

 

Parkinson’s Disease (PD) poses considerable challenges for early detection due to its diverse 

and intricate nature. Addressing this complexity requires sophisticated computational 

methods capable of effectively processing multimodal datasets, including clinical, vocal, and 

movement-related data. In response, we introduce an innovative deep learning model 

designed specifically for PD classification, coupled with a novel optimization technique 

aimed at enhancing its accuracy and generalization. 

 

3.1 Algorithms for CNNBiGRU-DGR 

1. Dual Input Processing: Simultaneously processes clinical and sequential data, such as 

vocal patterns and accelerometer readings, to enhance its analytical capability. 
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2. Attention Mechanism: A post-BiGRU attention layer emphasizes the most critical 

temporal features, improving interpretability and prediction outcomes. 

3. Adaptive Dropout: Dynamically adjusts dropout rates during training to minimize 

overfitting and improve performance. 

4. Gradient Smoothing: Stabilizes high-gradient updates to reduce overfitting and ensure 

steady training. 

5. Layer-Specific Adjustments: Tailors learning rates for individual layers to maximize 

performance in complex architectures. 

6. Early Stopping Integration: Complements early stopping techniques to avoid 

overfitting while preserving high accuracy. 

 

3.2Transformer Deep Learning with Particle Swarm Optimization (TDL-PSO) 

The integration of Transformer architectures with Particle Swarm Optimization (PSO) 

combines the advanced capabilities of modern deep learning and evolutionary optimization 

methods. This hybrid approach excels in applications requiring accurate feature extraction, 

effective hyperparameter tuning, and high-performance classification. 

 

3.2.1 Proposed Deep Learning: Transformer 
Transformers, first introduced by Vaswani et al. (2017), have emerged as a cornerstone in 

deep learning, particularly excelling in tasks like natural language processing and computer 

vision. These models leverage self-attention mechanisms to efficiently capture dependencies 

within sequential data without relying on recurrent architectures. Key elements of a 

Transformer include: 

 

1. Self-Attention Mechanism: 
o Analyzes relationships among all parts of an input sequence. 

o Effectively captures long-range dependencies, enhancing feature extraction. 

2. Feed-Forward Neural Networks: 
o Processes outputs from the self-attention layers to support prediction and 

classification tasks. 

3. Positional Encoding: 
o Encodes order information, essential for handling sequential data, such as 

time-series signals. 

 

Transformers have expanded their scope beyond traditional domains to include medical 

applications, such as analyzing neuroimaging and biosignals, proving particularly effective 

for Parkinson’s Disease detection (Dosovitskiy et al., 2020). 

 

3.2.2 Particle Swarm Optimization (PSO) 

PSO, developed by Kennedy and Eberhart (1995), is an optimization algorithm inspired by 

the collective behaviors of animals, such as birds and fish. This technique is used to optimize 

complex functions by iteratively improving a population of candidate solutions, called 

particles, using a fitness function to guide the search. 

 

Core Features of PSO: 

 Exploration and Exploitation: Utilizes particle velocity and position updates to search 

the solution space thoroughly. 
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 Dynamic Adaptation: Strikes a balance between exploring diverse possibilities and 

refining high-potential areas. 

 

PSO Workflow: 

1. Initialization: Particles are initialized with random positions and velocities. 

2. Fitness Evaluation: Each particle’s performance is assessed based on an objective 

function, such as accuracy or F1-score. 

3. Velocity and Position Updates: Using personal and global best positions, particles adjust 

their paths iteratively toward the optimal solution. 

PSO’s efficiency and simplicity make it a popular choice for optimizing machine learning 

hyperparameters, selecting features, and fine-tuning neural networks. 

 

3.2.3 Integrating Transformers with PSO  

The combination of Transformers with PSO creates a powerful framework for complex 

problem-solving, especially in the healthcare domain. 

Mechanism: 

1. Transformer Model: 
o Extract features from structuredor unstructured data. 

2. PSO for Optimization: 
o Tunes critical hyperparameters, such as learning rates, the number of layers, and attention 

heads, ensuring the model performs optimally. 

o A fitness function evaluates parameters based on metrics like validation accuracy or F1-

score. 

3. Training and Evaluation: 
o The model is iteratively trained using PSO-optimized parameters, improving its ability to 

generalize and perform across datasets. 

 Improved Feature Extraction: Transformers adeptly capture dependencies in sequential 

or spatial data. 

 Efficient Hyperparameter Tuning: PSO optimizes the search process for the best 

parameter configuration. 

 Better Generalization: The combination minimizes overfitting while enhancing 

performance on unseen data. 

 

3.2.4 Step-by-Step Process for Transformer + PSO Framework  

Step 1: Data Preprocessing 

1. Gather the dataset, which may include various data types like images, audio recordings, 

or sensor readings. 

2. Apply noise reduction techniques, such as median filtering or wavelet transformation, to 

enhance data quality. 

3. Normalize the dataset to ensure uniform scaling of features. 

4. Divide the dataset into subsets for training, validation, and testing in appropriate 

proportions (e.g., 70% training, 20% validation, and 10% testing). 

Step 2: Transformer Model Initialization 

1. Select a suitable transformer model, such as Vision Transformer (ViT) or Swin 

Transformer, based on the data characteristics. 

2. Define the model's architecture, including input dimensions, the number of transformer 

layers, and attention heads. 
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3. Implement multi-head self-attention to capture global relationships and dependencies 

within the data. 

Step 3: Setting Up Particle Swarm Optimization (PSO) 

1. Initialize a swarm of particles, where each particle represents a potential solution (e.g., a 

specific set of hyperparameters). 

2. Define the fitness function to evaluate particle performance (e.g., validation accuracy or 

F1-score). 

3. Configure PSO parameters: 

o Population size: Set the number of particles (e.g., 20). 

o Inertia weight (𝑤): Balance exploration (global search) and exploitation (local 

refinement). 

o Acceleration coefficients (𝑐₁, 𝑐₂): Control the impact of personal experience (cognitive) 

and swarm collaboration (social). 

Step 4: Optimization Loop 

1. For each particle in the swarm: 

o Calculate its fitness score using the current hyperparameter set. 

o Compare this score to the particle’s personal best (𝑝𝑏𝑒𝑠𝑡 ) and update if the fitness 

improves. 

o Compare the particle's score to the swarm's global best (𝑔𝑏𝑒𝑠𝑡 )and update if improved. 

2. Update the particle’s velocity (𝑣𝑖) and position (𝑥𝑖) using the equations:  

𝑣𝑖 = 𝑤. 𝑣𝑖 + 𝑐1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2. 𝑟2. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) 
𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖  

 where 𝑟1 and 𝑟2 are random values between 0 and 1. 

3. Continue the optimization until the convergence criterion is met, such as a maximum 

number of iterations or achieving an acceptable fitness level. 

Step 5: Training the Transformer Model 

1. Apply the optimized hyperparameters identified by PSO to configure the transformer. 

2. Train the transformer on the training data, using a loss function such as cross-entropy 

loss. 

3. Validate model performance during training, employing techniques like early stopping to 

prevent overfitting. 

Step 6: Evaluating Model Performance 

1. Test the final model on an unseen test dataset to assess generalization capability. 

2. Calculate and analyze key performance metrics, including: 

o Accuracy 

o Precision and Recall 

o F1-Score 

o Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) 

This systematic approach ensures robust feature extraction, optimal hyperparameter selection, 

and high performance in classification tasks. 

 

4.0 Experimental Results  

The dataset used for this study was obtained from the publicly available Kaggle repository. 

The Parkinson's dataset comprises 24 features, encompassing various categories of data such 

as name, MDVP:Fo(Hz), MDVP:Fhi(Hz), MDVP:Flo(Hz), MDVP:Jitter(%), 

MDVP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, Jitter:DDP, MDVP:Shimmer, 

MDVP:Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ, Shimmer:DDA, 

NHR, HNR, RPDE, DFA, spread1, spread2, D2, PPE, and status (Kaggle). The dataset is 
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composed of a range of biomedical voice measurements with Parkinson's disease (PD). The 

attribute details are outlined as follows: 

1. Name: ASCII representation of the subject's name and recording identifier. 

2. MDVP:Fo(Hz): Mean fundamental frequency of the voice. 

3. MDVP:Fhi(Hz): Maximum fundamental frequency of the voice. 

4. MDVP:Flo(Hz): Minimum fundamental frequency of the voice. 

5. Jitter Measures: Includes MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP, 

MDVP:PPQ, and Jitter:DDP, which represent various metrics of fundamental frequency 

variation. 

6. Shimmer Measures: Includes MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3, 

Shimmer:APQ5, MDVP:APQ, and Shimmer:DDA, reflecting amplitude variation in the 

voice. 

7. NHR and HNR: Metrics quantifying the ratio of noise to tonal components in the voice 

signal. 

8. RPDE and D2: Nonlinear dynamical complexity measures of the signal. 

9. DFA: The fractal scaling exponent of the signal. 

10. Spread1, Spread2, PPE: Nonlinear measures representing variations in the fundamental 

frequency. 

11. Status: Health status indicator of the subject, where "1" represents Parkinson's Disease 

and "0" indicates a healthy condition. 

 

Table 1a. Parkinson's Dataset 
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104.4000 206.0020 77.9680 0.0063 0.0001 0.0032 0.0038 0.0095 0.0377 0.3810 0.0173 

171.0410 208.3130 75.5010 0.0046 0.0000 0.0025 0.0023 0.0075 0.0197 0.1860 0.0089 

146.8450 208.7010 81.7370 0.0050 0.0000 0.0025 0.0028 0.0075 0.0192 0.1980 0.0088 

155.3580 227.3830 80.0550 0.0031 0.0000 0.0016 0.0018 0.0048 0.0172 0.1610 0.0077 

162.5680 198.3460 77.6300 0.0050 0.0000 0.0028 0.0025 0.0084 0.0179 0.1680 0.0079 

197.0760 206.8960 192.0550 0.0029 0.0000 0.0017 0.0017 0.0050 0.0110 0.0970 0.0056 

199.2280 209.5120 192.0910 0.0024 0.0000 0.0013 0.0014 0.0040 0.0102 0.0890 0.0050 

198.3830 215.2030 193.1040 0.0021 0.0000 0.0011 0.0014 0.0034 0.0126 0.1110 0.0064 

202.2660 211.6040 197.0790 0.0018 0.0000 0.0009 0.0011 0.0028 0.0095 0.0850 0.0047 

203.1840 211.5260 196.1600 0.0018 0.0000 0.0009 0.0011 0.0028 0.0096 0.0850 0.0047 

 

Table 1b. Parkinson's Dataset 
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0.0225 0.0378 0.0520 0.0289 22.0660 0.5227 0.7379 -5.5718 0.2369 2.8464 0.2195 1 

0.0117 0.0187 0.0267 0.0110 25.9080 0.4186 0.7209 -6.1836 0.2263 2.5897 0.1474 1 

0.0114 0.0183 0.0265 0.0133 25.1190 0.3588 0.7267 -6.2717 0.1961 2.3142 0.1630 1 
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0.0101 0.0166 0.0231 0.0068 25.9700 0.4705 0.6763 -7.1209 0.2798 2.2417 0.1085 1 

0.0106 0.0180 0.0238 0.0117 25.6780 0.4278 0.7238 -6.6357 0.2099 1.9580 0.1352 1 

0.0068 0.0080 0.0169 0.0034 26.7750 0.4222 0.7414 -7.3483 0.1776 1.7439 0.0856 0 

0.0064 0.0076 0.0151 0.0017 30.9400 0.4324 0.7421 -7.6826 0.1733 2.1031 0.0685 0 

0.0083 0.0095 0.0192 0.0012 30.7750 0.4659 0.7387 -7.0679 0.1752 1.5123 0.0963 0 

0.0061 0.0072 0.0141 0.0007 32.6840 0.3685 0.7421 -7.6957 0.1785 1.5446 0.0561 0 

0.0061 0.0073 0.0140 0.0007 33.0470 0.3401 0.7419 -7.9650 0.1635 1.4233 0.0445 0 

 

Table 2. Performance metrics for Parkinson's Disease analysis using ML and DL 

Model/Algorithm Accuracy Precision 
Recall / 

Sensitivity 
Specificity F1-Score 

Linear Regression 86.56 84.21 87.42 85.85 85.52 

Random Tree 88.23 86.21 89.25 87.96 87.55 

REP Tree 91.24 90.77 92.65 90.41 91.42 

Random Forest 93.56 92.88 94.82 91.74 93.21 

MLP 94.42 93.17 95.56 92.85 94.21 

LSTM 95.85 94.14 95.96 93.56 94.52 

CNNBiGRU-DGR 98.15 97.18 99.22 96.41 98.29 

TDL-PSO 99.24 98.41 99.45 97.87 99.29 

 

 
Figure 1. Accuracy of Parkinson's Disease analysis using ML and DL 
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Figure 2. Precision and Recall of Parkinson's Disease analysis using ML and DL 

 

 
Figure 3. Specificity and F1-Score of Parkinson's Disease analysis using ML and DL 

4. Results and Discussions  
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The results of the study demonstrate the efficacy of advanced machine learning (ML) and 

deep learning (DL) models, including the proposed Transformer Deep Learning framework 

optimized with Particle Swarm Optimization (TDL-PSO), in accurately detecting Parkinson’s 

Disease. The analysis was conducted using a publicly available dataset from Kaggle, 

featuring 24 attributes related to biomedical voice measurements. 

The analysis involves evaluating machine learning (ML) and deep learning (DL) models, 

including the novel Transformer Deep Learning optimized with Particle Swarm Optimization 

(TDL-PSO). The dataset comprises biomedical voice measurements to identify Parkinson’s 

Disease (PD). The performance metrics reported include Accuracy, Precision, 

Recall/Sensitivity, Specificity, and F1-Score. 

Accuracy (Figure 1): TDL-PSO achieves the highest accuracy of 99.24%, surpassing 

traditional ML models such as Linear Regression (86.56%) and advanced DL models like 

CNNBiGRU-DGR (98.15%). This improvement highlights the synergy of Transformers for 

feature extraction and PSO for hyperparameter optimization, enabling the model to generalize 

better to unseen data. 

Precision and Recall (Figure 2): TDL-PSO demonstrates outstanding precision (98.41%) 

and recall (99.45%), ensuring reliable detection of PD cases with minimal false positives and 

negatives. Comparatively, Random Forest and Multilayer Perceptron (MLP) achieve lower 

precision (92.88% and 93.17%) and recall (94.82% and 95.56%), indicating the limitations 

of traditional ensemble and neural network models in handling complex patterns in the 

dataset. 

Specificity and F1-Score (Figure 3): TDL-PSO's specificity (97.87%) and F1-Score 

(99.29%) outperform all other models, emphasizing its balanced performance across true 

positives and true negatives. CNNBiGRU-DGR, while competitive, falls slightly short with 

an F1-Score of 98.29%, indicating the added value of PSO in optimizing transformer 

hyperparameters. 

TDL-PSO as a Superior Framework: The integration of PSO ensures optimal parameter 

selection, such as learning rates and attention head configurations, enhancing model 

convergence and accuracy. Transformers’ attention mechanism effectively extracts critical 

temporal and spatial features from voice data, contributing to the high recall and precision. 

Traditional ML vs. DL Models: Models like Linear Regression and REP Tree show 

acceptable performance but lack the capability to capture nonlinear relationships and intricate 

data patterns inherent in PD datasets. Advanced DL models like LSTM and CNNBiGRU-

DGR perform significantly better due to their ability to handle sequential and multimodal 

data. 

Importance of Optimization: PSO reduces overfitting and accelerates convergence by fine-

tuning parameters. This advantage is evident in the performance gap between TDL-PSO and 

other deep learning models. 

Medical Diagnosis: The TDL-PSO framework offers a robust tool for early and accurate PD 

detection, potentially reducing misdiagnoses and enabling timely intervention. This hybrid 

approach can be extended to other medical datasets and tasks requiring feature-rich, 

multimodal data analysis. 

 

5. Conclusion 

 

This research highlights the efficacy of combining Transformer-based deep learning models 

with Particle Swarm Optimization (PSO) for detecting Parkinson's Disease at an early stage, 
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surpassing the performance of conventional machine learning and other deep learning 

approaches. The TDL-PSO framework effectively captures intricate patterns within 

multimodal datasets while optimizing hyperparameters through evolutionary techniques, 

resulting in significant improvements in metrics such as accuracy (99.24%), precision 

(98.41%), recall (99.45%), and specificity (97.87%). These findings emphasize the potential 

of hybrid deep learning frameworks in advancing medical diagnostics, particularly for 

complex conditions like Parkinson's Disease that require robust and adaptable analytical 

solutions. Furthermore, the incorporation of advanced features, including self-attention 

mechanisms and adaptive dropout, has enhanced the framework's ability to generalize across 

datasets and provide interpretable results. 

 

6. Further Studies 

Future investigations can focus on broadening the scope and scalability of the TDL-PSO 

framework. For instance, integrating diverse datasets that include voice recordings, 

neuroimaging data, and wearable sensor readings can offer a more comprehensive 

understanding of Parkinson’s Disease, leading to improved diagnostic precision. Additionally, 

the adoption of more advanced optimization methods, such as quantum-behavioral PSO or 

hybrid metaheuristic algorithms, could refine the efficiency of hyperparameter tuning and 

accelerate convergence. Federated learning architectures could also be explored to facilitate 

collaborative model training across institutions, addressing privacy concerns and ensuring 

wider applicability across heterogeneous patient populations. Lastly, the framework's 

deployment in real-time clinical environments should be evaluated, focusing on 

computational efficiency and its practical potential for aiding early diagnosis and treatment 

planning in Parkinson's Disease care.  
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