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ABSTRACT 
The study focuses on enhancing the accuracy and reliability of visceral adipose tissue (VAT) 
segmentation and quantification from abdominal MRI images. Accurate segmentation of VAT is 
crucial for assessing obesity-related health risks, as traditional methods struggle with irregular 
shapes and varying intensities. The research utilizes a methodology consisting of three key 
modules: homomorphic filtering for intensity inhomogeneity correction, a U-Net architecture with 
attention mechanisms for primary segmentation, and a region-growing algorithm for refining 
segmentation. Homomorphic filtering effectively separates bias fields, enhancing image quality by 
transforming multiplicative artifacts into additive ones and removing them with high-pass filtering. 
This process ensures precise segmentation by maintaining high-frequency anatomical details. The 
U-Net model incorporates attention mechanisms and skip connections to focus on VAT regions, 
utilizing both local and global image contexts.The Combined Healthy Abdominal Organ 
Segmentation (CHAOS) challenge dataset and the Cancer Imaging Archive (TCIA) dataset are used 
to train and evaluate the model.  It achieves a Dice Similarity Coefficient (DSC) of up to 0.985 on 
the CHAOS dataset and 0.972 on the TCIA dataset, outperforming existing methods in terms of 
segmentation accuracy. The region-growing algorithm further refines the segmentation by 
expanding VAT regions from high-confidence seed points, ensuring accurate boundary delineation 
and reducing noise. The study's results, evaluated using k-fold cross-validation, show that the 
proposed methodology significantly improves VAT segmentation efficiency, achieving a median 
DSC of 0.96 for the CHAOS dataset and 0.95 for the TCIA dataset in the most comprehensive 
experimental scenario. Comparative analysis indicates that the proposed approach outperforms 
other models, with higher sensitivity and specificity values, highlighting its potential for clinical 
applications in obesity management.. 

1. Introduction 

Visceral adipose tissue (VAT), the fat that accumulates around internal organs, is recognized as a significant 

contributor to obesity-related health risks [1][2]. Unlike subcutaneous fat, which lies beneath the skin, VAT is 

strongly associated with various metabolic disorders, including cardiovascular disease, type 2 diabetes, and 

certain types of cancer [3][4]. As such, accurate assessment of VAT volume is crucial for understanding 

individual health risks and tailoring personalized treatment plans. Magnetic resonance imaging (MRI) has 

emerged as a valuable tool for non-invasive VAT quantification due to its ability to provide detailed anatomical 

information without exposing patients to ionizing radiation [5]. However, analyzing MR images for VAT 

segmentation and quantification is not possiblewithout its challenges. The inherent variability in VAT 

distribution across individuals, coupled with image artifacts like intensity inhomogeneity, can impede accurate 

identification and measurement [6][7]. As illustrated in Figure 1, abdominal MRI scans of individuals with 

obesity often exhibit complex VAT morphology, highlighting the challenges in accurate segmentation and 

quantification [8]. Additionally, traditional manual segmentation techniques are time-consuming and prone to 

human error, highlighting the need for automated and reliable solutions [9]. Previous research efforts have 

explored various approaches to automate VAT segmentation in MR images. These include classical image 

processing techniques, such as thresholding and region growing, as well as more recent advances in machine 
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learning, particularly deep learning models like U-Net [10][11][12]. While these methods have shown promise, 

they often face limitations in accurately delineating VAT boundaries, especially in cases with complex shapes, 

varying intensities, and overlaps with other tissues [14][15]. Moreover, the presence of intensity inhomogeneity 

in MR images can further degrade the performance of these methods. 

  
Figure 1 (a): Abdominal 

MRI of an Individual 

with Obesity 

Figure 1(b): Illustration 

of the Complex 

Morphology of VAT in 

Abdominal MRI (Blue 

Overlay) 

The proposed methodology offers a robust solution to the challenges of VAT segmentation and 

quantification in abdominal MR images. The integration of three key modules—bias field correction, U-Net 

segmentation, and VAT quantification—enables a precise and reliable assessment of VAT. Intensity 

inhomogeneity, a common artifact in MR images, can significantly hinder accurate VAT delineation. The 

proposed method addresses this issue by employing homomorphic filtering for bias field correction. This 

technique effectively removes the smooth, spatially varying intensity variations that can obscure VAT 

boundaries, thereby improving the quality of the input data for subsequent segmentation. The core of the 

methodology lies in the optimized U-Net architecture, designed specifically for VAT segmentation. Unlike 

traditional U-Nets, this model incorporates multiple attention blocks at various stages, enabling it to focus on 

subtle VAT patterns amidst complex anatomical structures. The attention mechanism enhances the model's 

sensitivity to the subtle features that distinguish VAT from surrounding tissues. Additionally, skip connections 

preserve fine-grained details during downsampling, ensuring sharp and accurate VAT boundaries in the final 

segmentation. 

Following the U-Net segmentation, the region-growing algorithm further refines the VAT boundaries. 

This refinement step is crucial for addressing potential inaccuracies in the initial segmentation, such as over- 

or under-segmentation. By iteratively expanding the VAT regions based on similarity criteria, the algorithm 

ensures a more precise delineation of the VAT, leading to accurate volume quantification. The final module 

focuses on quantifying the segmented VAT volume. It converts the segmented regions into a binary mask, 

where each pixel represents either VAT or non-VAT tissue. The volume of each voxel is then calculated 

based on the image resolution, and the total VAT volume is obtained by summing the volumes of all VAT 

voxels. This quantitative assessment provides clinicians with a valuable tool for diagnosing and monitoring 

obesity-related health risks. 

According to the results, the proposed method excels in its ability to deliver high segmentation accuracy 

and efficiency across different datasets. It achieves optimal performance within 300 epochs, indicating a well-

tuned learning process. The method consistently outperforms existing approaches, particularly in complex 

cases involving VAT and non-VAT regions. The incorporation of k-fold cross-validation further strengthens 

the model's generalization ability, as seen in the consistent improvement of performance metrics with 

increasing folds. The combination of preprocessing with homomorphic filtering and region-growing 

significantly enhances the segmentation results, reducing errors in boundary delineation and increasing 

sensitivity and specificity. Additionally, the proposed method's superior DSC and Intersection over Union 

(IoU) highlight its ability to accurately capture VAT regions, outperforming other state-of-the-art models. 

This paper is organized as follows: Section 2 reviews related work, highlighting the strengths and 

limitations of existing methods for VAT segmentation. Section 3 presents the details of the proposed 

methodology, including the integration of bias field correction, the U-Net architecture, and the region-growing 

algorithm. Section 4 outlines the experimental setup and discusses the results of the proposed method in 
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comparison with other approaches. Section 5 concludes the paper by summarizing the contributions and 

suggesting potential directions for future work. 

 

 

2. Literature review 

Hao Shen et al. [15] developed a deep-learning model for the automatic segmentation of abdominal muscle 

and fat. The developed algorithm, SECANet, is based on the U-Net architecture and incorporates a selective 

efficient channel attention block to improve segmentation accuracy. The methodology involves preprocessing 

the abdominal CT and MR images by adjusting Hounsfield unit values and applying z-score normalization. 

The main drawback of this model is its difficulty in accurately segmenting VAT regions, particularly in cases 

with smaller VAT areas. This issue occurs because the U-Net model struggles to handle unbalanced pixel 

proportions in the dataset, resulting in poor VAT segmentation. Additionally, the model tends to over- or 

under-segment complex regions due to insufficient feature extraction during training on diverse anatomical 

variations, which leads to errors in delineating VAT boundaries. 

Prakash etal.[16] introduced a MultiRes-Attention U-Net to automate the segmentation of abdominal fat 

compartments, particularly superficial subcutaneous adipose tissue (SSAT), deep subcutaneous adipose tissue 

(DSAT), and VAT using MRI scans. The method integrates MultiRes blocks, attention gates, and a hybrid loss 

function to handle varying shapes and sizes of fat deposits across abdominal regions. The method 

demonstrated good generalization, but one key drawback is its missing segmentation in complicated regions. 

This issue arises because the MultiRes-Attention U-Net, despite using attention gates, struggles with intricate 

anatomical boundaries and the discontinuous nature of VAT, particularly around internal organs. Additionally, 

the model’s dependence on 2D slice conversion from 3D MR scans reduces the ability to capture complex 

spatial relationships, leading to segmentation inaccuracies in challenging regions. 

Kafali et al. [17]developed an automated method for abdominal VAT segmentation and volume 

quantification using MRI data. They proposed two 3D CNN models: ACD 3D U-Net and 3D nnU-Net. These 

models utilize volumetric multi-contrast MRI inputs and attention mechanisms to segment both subcutaneous 

and VAT. However, the authors did not fully address the complexity of anatomical structures in MRI scans. 

The U-Net models face challenges with intensity variations and overlaps, leading to inaccuracies in VAT 

boundary delineation.  

Somasundaram et al. [18] developed an automated method for body composition analysis using nnU-Net 

for segmentation of VAT, subcutaneous adipose tissue (SAT), liver, and muscles based on water-fat MRI. The 

method utilized chemical shift-encoded MRI to extract quantitative metrics such as proton density fat fraction 

(PDFF) and organ volumes. However, the proposed method struggles with complex VAT boundaries, which 

often lead to over- or under-segmentation. This issue arises because the algorithm primarily relies on water-fat 

separation, neglecting complex anatomical structures and intensity inhomogeneities.  

Ogunleye et al [19] proposed an automated approach for VAT and SAT quantification in adolescents using 

Dixon-based MRI and CNN. The method integrates region- and pixel-based segmentation, utilizing a U-Net 

architecture to segment abdominal regions and classify adipose tissue. A major drawback of the approach is its 

focus on single MRI slices, which limit the algorithm’s ability to capture complex VAT boundaries.  

Wu et al.[20] propose an automated deep-learning method to segment SAT and VAT from Dixon MRI 

scans in adolescents. The model, based on the 2D-CDFNet architecture, focuses on abdominal fat 

segmentation using axial fat and water images. However, the primary drawback relates to the complexity of 

VAT segmentation in adolescents, which presents challenges for precise boundary delineation. The 

segmentation quality is further compromised by the lack of consideration for anatomical variations that occur 

during puberty. 

Christine Haugen et al. [21] method aims to segment and quantify adipose tissue (AT) in both mice and 

human MRI images. It utilizes a semi-automated approach involving image thresholding, background noise 

removal, object labelling, and manual editing to distinguish SAT from VAT. The algorithm calculates the 

volume of each AT depot by counting the voxels after segmentation. However, a major drawback is the 

reliance on manual editing, which introduces subjectivity and potential variability between users. This can lead 

to inconsistencies in the results. 
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Ina Vernikouskayal et al. [22] present a method for automated segmentation and quantification of 

abdominal body fat compartments, differentiating SAT and VAT, from T1-weighted MRI using a U-Net. The 

study successfully applied the algorithm to a dataset of both healthy controls and patients with amyotrophic 

lateral sclerosis (ALS), demonstrating a significantly increased VAT/SAT ratio in the ALS group. However, a 

potential drawback is the model's reliance on high-quality reference segmentations for training and validation. 

The limitations of these reference segmentations, such as those caused by motion artifacts or poor image 

contrast, could potentially impact the accuracy of the model's predictions. 

Hwang et al. [23] developed a method for VAT segmentation using 3D CT images. The method aims to 

provide a VAT volume measurement by automatically dividing three anatomical compartments: the lungs, soft 

tissues, and post-vertebral spaces. The approach involves a three-step process, utilizing 3D CT images to 

separate the regions. However, this method faces segmentation issues, particularly in regions where VAT and 

SAT meet. These errors arise because the algorithm relies primarily on Hounsfield unit (HU) values, which do 

not effectively calculate the complex boundaries between different tissue types. 

Several deep learning models and algorithms have been developed to address VAT segmentation challenges 

in abdominal scans from MRI and CT images. However, these approaches often face difficulties in handling 

complex anatomical boundaries, intensity variations, and the discontinuous nature of VAT. Despite their 

advancements, issues like over and under-segmentation in complex regions persist, highlighting the need for 

more refined techniques. 

3. Proposed Method 

The proposed methodology consists of three main modules. The initial module addresses intensity 

inhomogeneities in MR images using homomorphic filtering. Separating the bias field from anatomical details 

enhances image quality and ensures accurate subsequent analysis. An optimized U-Net architecture, 

incorporating attention mechanisms and skip connections, performs the primary VAT segmentation.  

This deep learning model utilizes both local and global image features to identify VAT regions accurately, 

even in challenging cases of irregular shapes and varying intensities. The final module quantifies the 

segmented VAT volume. It converts the segmented regions into a binary mask, calculates the volume of 

individual voxels based on image resolution, and sums these volumes to obtain the total VAT volume. This 

provides a clinically relevant metric for assessing obesity-related health risks. Figure 2 shows the overall 

process flow of the proposed automated VAT segmentation and quantification system. 

 

3.1 Dataset details 

The dataset for this research includes two well-known abdominal MRI datasets. From the dataset,obesity 

patient MRI scans were chosen with the assistance of a skilled radiologist. The first dataset is from the 

Combined Healthy Abdominal Organ Segmentation (CHAOS) challenge [27]. This dataset contains 

abdominal CT and MRI (T1 and T2 weighted) images, but only the MR images are used in this study for 

model training and testing. The images were acquired using a 1.5T Philips MRI scanner, producing 12-bit 

DICOM images with a resolution of 256 x 256 pixels. The slice thickness varies between 5.5 and 9 mm, with 

an average of 7.84 mm. The x-y pixel spacing ranges from 1.36 to 1.89 mm, averaging 1.61 mm. The dataset 

includes between 26 and 50 slices per sequence, with an average of 36 slices. The second dataset is obtained 

from the Cancer Imaging Archive (TCIA), which offers a wide variety of abdominal MRI scans [28]. The 

second dataset was sourced from The Cancer Imaging Archive (TCIA), a publicly accessible repository of 

medical images. The combination of these two datasets enhances the model's ability to generalize to unseen 

data, ensuring its robustness and applicability in real-world scenarios. 

3.2 Bias Field Correction Using Homomorphic Filtering 

Bias field correction is crucial for subsequent VAT segmentation and quantification, ensuring that the 

resulting measurements are accurate and reliable. The bias field, also known as intensity inhomogeneity, is a 

low-frequency artifact that causes intensity variations across the image, leading to inaccurate segmentation 

and quantification. In this research homomorphic filtering is used to separate the multiplicative bias field from 

the true image, effectively correcting these intensity variations. Homomorphic filtering operates by 

transforming the multiplicative components of the image into additive ones, applying a high-pass filter to 
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remove the bias field, and then transforming the components back to their original domain [25]. This process 

ensures that the bias field, which varies slowly across the image, is separated from the high-frequency 

anatomical details. Convert the multiplicative bias field problem into an additive one using a logarithmic 

transformation. Let 𝐼 𝑥, 𝑦  be the observed image, 𝑅 𝑥, 𝑦  be the true image, and 𝐵 𝑥, 𝑦  be the bias field: 

𝐼 𝑥, 𝑦 = 𝑅 𝑥, 𝑦 ⋅ 𝐵 𝑥, 𝑦    (1) 

 

Figure 2. Overall process flow of proposed Automated VAT Segmentation and Quantification from Abdominal MRI 

using an Enhanced U-Net and Region Growing Algorithm 

Applying the logarithm: 

log 𝐼 𝑥, 𝑦  = log 𝑅 𝑥, 𝑦  + log 𝐵 𝑥, 𝑦     (2) 

Transform the logarithmically converted image into the frequency domain using the Fourier transform: 

𝐹 𝑢, 𝑣 = ℱ{log 𝐼 𝑥, 𝑦  }    (3) 

Apply a high-pass filter to 𝐹 𝑢, 𝑣  to attenuate the low-frequency components (bias field) while preserving 

the high-frequency components (true image details). Let 𝐻 𝑢, 𝑣  be the high-pass filter: 

𝐹𝐻 𝑢, 𝑣 = 𝐹 𝑢, 𝑣 ⋅ 𝐻 𝑢, 𝑣     (4) 

Transform the filtered image back to the spatial domain using the inverse Fourier transform: 

log 𝐼𝐻 𝑥, 𝑦  = ℱ−1{𝐹𝐻 𝑢, 𝑣 }    (5) 

Apply the exponential function to revert the logarithmic transformation, resulting in the corrected image: 

𝐼𝐻 𝑥, 𝑦 = exp log 𝐼𝐻 𝑥, 𝑦      (6) 

By applying homomorphic filtering, the bias field correction module effectively removes intensity 

inhomogeneities from the MRI images. Homomorphic filtering enhances the overall quality of the medical 

images, making them suitable for precise analysis and diagnosis. This process addresses the challenge of 

irregular shapes, overlaps, and variability in VAT, providing a consistent and robust approach to bias field 

correction in medical imaging. Figure 3 shows the abdominal MR image before and after pre-processing. 
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(A)  (B)  

Figure 3. (A) Original abdominal MR image before pre-processing; (B) noise-removed abdominal MR image 

(after bias field correction). 

3.3 Proposed U-Net architecture 

The proposed U-Net architecture for VAT segmentation from MR images builds upon the established U-

Net framework, introducing key modifications to enhance accuracy and efficiency in handling the unique 

challenges of VAT detection [26]. The input layer accepts 320x320 pixel medical images with two channels. 

The initial convolutional block applies filters to extract essential features from the input data, transforming the 

dimensions to 320x320x128. This block not only captures low-level features like edges and textures but also 

introduces an attention mechanism, allowing the model to focus on regions of interest within the image.  

 

Figure 4 (a) Proposed attention-based U-net architecture for VAT segmentation from abdominal MR images. 
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Figure 4 (b) Convolution block details of 

proposed U-net architecture. 

Figure 4 (c) Attention block details of proposed 

U-net architecture. 

The downsampling path progressively reduces the spatial dimensions of the feature maps through max-

pooling, maintaining a consistent depth of 128 channels. This hierarchical approach allows the model to 

capture both local details and broader contextual information. The midblock, a crucial component, 

incorporates multiple attention blocks (ABs) with varying channel depths. Each AB utilizes global average 

pooling to summarize features, followed by dense layers and activation functions to generate attention maps. 

These maps modulate the input features, emphasizing relevant information and suppressing noise. The 

multiple ABs with different channel depths enable the model to capture attention at various scales, 

contributing to a more detailed understanding of VAT distribution. The upsampling path mirrors the 

downsampling path, increasing the spatial dimensions while refining the segmentation details. Dropout layers 

help mitigate overfitting by randomly deactivating neurons during training. Skip connections facilitate the 

fusion of high-level semantic information from the midblock with low-level spatial details from the 

downsampling path, ensuring accurate boundary delineation. The final output layer generates a segmentation 

map with the same dimensions as the input image. The sigmoid activation function ensures pixel values 

represent probabilities belonging to the VAT class, enabling precise localization of VAT regions. 

The proposed U-Net architecture for VAT segmentation from MR images has several key enhancements. 

Figure 4 (a) shows the proposed attention-based U-net architecture for VAT segmentation from abdominal 

MR images. Figure 4 (b) shows the convolution block details of the proposed U-net architecture and Figure 4 

(c) shows the attention block details of the proposed U-net architecture.  

Multiple attention blocks integrated at various stages improve the model's ability to detect subtle VAT 

patterns amidst complex intensity variations often seen in MR images. Using two-channel input data allows 

for incorporating additional information from MR images, potentially enhancing tissue contrast and 

segmentation accuracy. Skip connections preserve fine-grained details during downsampling, ensuring sharp 

and accurate VAT boundaries in the final segmentation. An optimized midblock with varying attention block 

depths enables efficient capture of contextual information at different scales, facilitating the handling of 

diverse VAT shapes and sizes. These combined improvements result in a robust and accurate solution for 

VAT segmentation from MR images. 
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3.4 Region Growing algorithm and post-processing 

The region-growing module in the proposed methodology focuses on refining the initial segmentation of 

VAT obtained from the U-Net model. This module addresses the unique challenges posed by irregular shapes, 

overlaps, and variability in VAT regions, ensuring that the final segmentation is both accurate and clinically 

useful. Region growing is a pixel-based image segmentation technique that starts with an initial set of seed 

points and expands these regions by including neighboring pixels that meet a certain similarity criterion. This 

method is particularly effective for medical imaging, where precise delineation of tissue boundaries is crucial. 

Seed Point Selection: The process begins with selecting seed points within the VAT regions identified by the 

U-Net model. These seed points serve as the starting locations for the region growing process. In the context 

of VAT segmentation, seed points can be chosen based on high-confidence areas within the U-Net output, 
where the probability of being VAT is significantly high. 

Similarity Criterion: A similarity criterion determines whether neighboring pixels should be included in the 

growing region. For VAT segmentation, this criterion is typically based on intensity values and spatial 

proximity. Let I(x,y) denote the intensity of a pixel at location (x,y), and Iseedbe the intensity of the seed pixel. 
A pixel (x

′
,y

′
) is included in the region if it satisfies: 

 𝐼 𝑥′ , 𝑦′ −  𝐼𝑠𝑒𝑒𝑑 ≤  𝜖  (7) 

where ϵ is a predefined threshold. This ensures that only pixels with similar intensity values to the seed point 

are included in the VAT region. 

Region Growing Algorithm: The algorithm iterates over the image, starting from the seed points and 

expanding the regions by including neighboring pixels that meet the similarity criterion. The process 
continues until no more pixels can be added to any of the regions. 

Post-Processing: After the region growing algorithm completes, the resulting binary mask M may contain 

small isolated regions or noise. A morphological opening operation (erosion followed by dilation) can be 
applied to remove these artifacts and ensure that the VAT regions are smooth and well-defined. 

Algorithm 1 Region Growing Algorithm 

Set the initial seed points S = {(xi,yi)} based on the U-Net output. 

2: Create an empty binary mask M of the same dimensions as the input image, initialized to zero. 

3: Define a queue Q to manage the region growing process. 

4: for each seed point (xi,yi) ∈S do 5: Add (xi,yi) to Q. 

6: end for 

7: while Q is not empty do 

8: Remove the front element (x,y) from Q. 

9: for each neighbor (x
′
,y

′
) of (x,y) do 

10:if (x
′
,y

′
) is within image bounds and M(x

′
,y

′
) = 0 and |I(x

′
,y

′
) − I(x,y)| ≤ ϵ then 

11: Set M(x
′
,y

′
) = 1. 

12: Add (x
′
,y

′
) to Q. 

13: end if 

14: end for 

15: end while 

By incorporating region growing, the proposed methodology ensures that VAT segmentation is refined and 

accurate, even in challenging cases with irregular shapes and varying intensities. This module complements 

the initial U-Net segmentation by addressing local intensity variations and spatial continuity, leading to more 

precise and clinically relevant VAT quantification. 

3.5 VAT quantification 

The VAT quantification module is designed to measure the volume of VAT accurately after segmentation 

and refinement using the U-Net. The goal is to calculate the VAT volume within the medical images, 

providing a quantitative assessment that can aid in diagnosing and monitoring obesity-related health risks. 
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Binary Mask Creation: The refined VAT regions from the previous steps are transformed into a binary mask, 

denoted as M. This mask assigns a value of 1 to pixels within the VAT region and 0 to pixels outside the VAT 

region. Mathematically, this is represented as: 

𝑀 𝑖, 𝑗 =  
1  𝑖𝑓 𝑝𝑖𝑥𝑒𝑙  𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑉𝐴𝑇 𝑟𝑒𝑔𝑖𝑜𝑛

  0  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
    (8) 

where (i, j) are the coordinates of a pixel in the image. Figure 5 illustrates a simplified representation of the 

binary mask used in the VAT quantification algorithm.  

 

Figure 5. Binary Mask Representation of VAT Segmentation 

The blue region corresponds to the VAT mask (M), where each pixel is assigned a value of 1, indicating the 

presence of VAT. Conversely, the white region represents the non-VAT region, with each pixel assigned a 

value of 0. 

Voxel Volume Calculation: Each pixel in the image corresponds to a three-dimensional voxel in the actual 

scanned volume. A voxel is a three-dimensional equivalent of a pixel. It has dimensions in width, height, and 

depth (usually denoted as dx×dy×dz).  Each voxel in a medical image represents a small volume of tissue in 

the scanned body. The segmented VAT region consists of a set of connected voxels that have been identified 

by the U-Net and refined by the region-growing algorithm.  

With an in-plane resolution of r×r (pixel width and height) and slice thickness t, the voxel volume is 

calculated as: 

𝑉𝑣𝑜𝑥𝑒𝑙 =  𝑟2 ∗  𝑡   (9) 

VAT Volume Calculation: The total VAT volume, VVAT, is calculated by summing the volumes of all voxels 

identified as VAT within the binary mask M. The algorithm first counts the number of pixels in the mask 

labelled as VAT (value 1), denoted as NVAT. Then, the total VAT volume is calculated as: 

𝑉𝑉𝐴𝑇 =  𝑁𝑉𝐴𝑇 ∗  𝑉𝑣𝑜𝑥𝑒𝑙    (10) 

Algorithm 2. VAT quantification 

1. Initialization: 

Set 𝑉𝑉𝐴𝑇 𝑡𝑜 0 

Obtain the binary mask M from the refined segmentation. 

2. Voxel Iteration: 
 𝐹𝑜𝑟 𝑒𝑎𝑐𝑕 𝑝𝑖𝑥𝑒𝑙  𝑖, 𝑗 𝑖𝑛 𝑀 

 𝐼𝑓 𝑀 𝑖, 𝑗 ==  1 
 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑁𝑉𝐴𝑇  

3. Volume Calculation: 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑉𝑣𝑜𝑥𝑒𝑙 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡𝑕𝑒 𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑟, 𝑡  

Calculate 𝑉𝑉𝐴𝑇 =  𝑁𝑉𝐴𝑇 ∗ 𝑉𝑣𝑜𝑥𝑒𝑙  

4. Output: 

The final value of 𝑉𝑉𝐴𝑇  represents the total volume of VAT in the image. 
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By integrating these steps, the VAT quantification module provides a comprehensive and reliable 

assessment of VAT volume, contributing valuable information for clinical diagnosis and treatment planning. 

Figure 6 explains the detailed process flow of the proposed VAT quantification system. Table 1 summarizes 

the list of symbols and notations in this article. 

 

Figure 6. VAT quantification process flow. 

Table 1. List of symbols and notations 

Symbol/Notation Description 

𝐼 𝑥, 𝑦  Observed image intensity at pixel location  𝑥, 𝑦 . 

𝑅 𝑥, 𝑦  True image intensity at pixel location  𝑥, 𝑦 . 

𝐵 𝑥, 𝑦  Bias field at pixel location  𝑥, 𝑦 . 

𝐹 𝑢, 𝑣  Fourier transform of the logarithmic image. 

𝐻 𝑢, 𝑣  High-pass filter applied in the frequency domain. 

𝐹𝐻 𝑢, 𝑣  High-pass filtered Fourier transform. 

𝐼𝐻 𝑥, 𝑦  Corrected image after applying homomorphic filtering. 

𝑁VAT Number of voxels classified as VAT in the binary mask. 

𝑉voxel Volume of a single voxel based on image resolution and slice thickness. 
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𝑉VAT Total VAT volume obtained from the segmented regions. 

𝑀 𝑖, 𝑗  Binary mask, where 𝑀 𝑖, 𝑗 = 1 indicates a pixel belonging to VAT region. 

𝑟 Pixel width and height (in-plane resolution). 

𝑡 Slice thickness in the image volume. 

𝜖 Predefined threshold for intensity similarity in the region-growing algorithm. 

log Logarithmic transformation function. 

exp Exponential function to revert the logarithmic transformation. 

𝜎 𝑥  Sigmoid activation function used in U-Net for pixel classification. 

𝐹−1 Inverse Fourier transform. 

 

4. Results 

The experimental setup for this research involved utilizing a Dell G15 computer equipped with an i5 

processor, 16GB of RAM, and an NVIDIA QUADRO RTX 6000 graphics card with 24GB of VRAM. The 

operating system used was Windows 11.  

During the training phase, 500 epochs were initially allocated, but it was observed that optimal 

performance was achieved within 300 epochs for all models. Following training, the segmentation efficiency 

of both the proposed and existing methods was assessed for VAT and non-VAT regions in abdominal MR 

images. Two distinct datasets were employed to thoroughly evaluate the performance of each method. A 

comparative analysis was conducted, including the proposed approach and various existing methods from the 

literature including Hao Shen et al. [15], Prakash et al [16], Kafali et al. [17], Somasundaram et al [18], 

Ogunleye et al. [19], Wu et al. [20], Christine Haugen et al. [21], Ina Vernikouskayal. [22], and Hwang et al. 

[23].  

To ensure a comprehensive evaluation, multiple accuracy metrics were utilized, including the Dice 

Similarity Coefficient (DSC), Intersection over Union (IoU), Sensitivity, and Specificity. These metrics 

provide insights into the agreement between the predicted segmentation and the ground truth, as well as the 

ability to correctly identify VAT regions while minimizing false positives. The following equations are used to 

calculate the above performance metrics.  

𝐷𝑆𝐶 =
2.𝑇𝑃

2⋅TP  + FP  + FN  
   (11) 

IoU =
𝑇𝑃

TP  + FP  + FN  
   (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

TP  + FN  
(13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

TN  + FP  
   (14) 

The hyperparameters for the proposed method were carefully selected. The training process used 500 

epochs, although peak performance was reached before this limit. A learning rate of 0.0001 and a momentum 

value of 0.9 were employed to optimize the learning process. The Adam optimizer was chosen for its 

effectiveness in training deep learning models, particularly for image segmentation tasks. 

4.1 k-Fold Cross-Validation  

Tables 2 and 3 present a comprehensive assessment of the proposed method's performance using k-fold 

cross-validation on two distinct datasets: CHAOS and TCIA. Each dataset was evaluated across different folds 

(k=2, 3, 4, and 5), providing a robust evaluation of the method's consistency and generalization capabilities. 

For the CHAOS dataset, the method consistently achieved high DSC and IoU values across all folds, 

indicating excellent agreement between the predicted VAT segmentation and the ground truth. Sensitivity and 

specificity values also remained high, suggesting that the model effectively identified VAT regions while 
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minimizing false positives and false negatives. Notably, the performance improved as the number of folds 

increased, highlighting the method's ability to learn and generalize from the data. Similarly, on the TCIA 

dataset, the method demonstrated strong performance across all folds, with consistently high DSC and IoU 

values. Sensitivity and specificity remained high, further affirming the model's accuracy in identifying VAT 

regions and distinguishing them from other tissues.  

Table 2: K-Fold Cross-Validation Performance of VAT Segmentation on CHAOS Dataset 

 

k-

Fold  

DSC IoU Sensitivity Specificity 

K=2  0.923 

± 0.07 

0.921 ± 

0.19 

0.954 0.959 

K=3 0.951 

± 0.06 

0.932 ± 

0.12 

0.961 0.973 

K=4 0.961 

± 0.08 

0.951 ± 

0.12 

0.985 0.977 

K=5 0.987 

± 0.05 

0.986 ± 

0.19 

0.981 0.993 

 
Table 3: K-Fold Cross-Validation Performance of VAT Segmentation on TCIA Dataset 

k-Fold  DSC IoU Sensitivity Specificity 

K=2  0.921 ± 0.09 0.933 ± 0.02 0.942 0.938 

K=3 0.932 ± 0.11 0.941± 0.05 0.961 0.946 

K=4 0.956 ± 0.21 0.957 ± 0.07 0.982 0.974 

K=5 0.972 ± 0.16 0.963 ± 0.11 0.990 0.985 

 

4.2 VAT segmentation efficiency analysis using different experimental scenarios 

The experimental design aimed to thoroughly assess the impact of each component in the proposed method 

by evaluating four distinct scenarios. In the first scenario, both preprocessing and region growing were 

excluded, isolating the performance of the U-Net model alone. The second scenario excluded preprocessing 

but included region growing, highlighting the contribution of boundary refinement. The third scenario 

involved preprocessing without region growing, emphasizing the importance of image enhancement. Finally, 

the fourth scenario combined both preprocessing and region growing, representing the full proposed 

methodology. This approach allowed for a granular analysis of the contribution of each step to the overall 

performance. The results, presented as the median DSC for VAT across both datasets and 5-fold cross-

validation, along with the global average, provided a comprehensive comparison. 

Table 4 illustrates the impact of different components on VAT segmentation efficiency. The baseline U-Net 

model (Scenario 1) achieved reasonable performance, with median DSC values of 0.91 for CHAOS and 0.89 

for TCIA datasets. However, the incorporation of region growing (Scenario 2) consistently improved the 

median DSC, highlighting its effectiveness in refining the segmentation results. Similarly, the addition of 

preprocessing (Scenario 3) led to notable improvements compared to the baseline, demonstrating the positive 

impact of image enhancement on segmentation accuracy.  

 
Table 4: Comparative Analysis of VAT Segmentation Efficiency Across Different Experimental Scenarios and Datasets

Dataset Scenario Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Median DSC Global Average 

CHAOS 1 0.86 0.88 0.91 0.92 0.93 0.91 0.901 

CHAOS 2 0.91 0.92 0.92 0.93 0.95 0.92 0.925 

CHAOS 3 0.92 0.94 0.94 0.95 0.96 0.94 0.941 

CHAOS 4 0.94 0.94 0.97 0.97 0.98 0.95 0.958 

TCIA 1 0.85 0.88 0.89 0.90 0.91 0.89 0.886 

TCIA 2 0.89 0.91 0.92 0.93 0.94 0.92 0.918 

TCIA 3 0.90 0.92 0.94 0.95 0.96 0.94 0.922 

TCIA 4 0.93 0.94 0.95 0.96 0.97 0.95 0.95 
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The full proposed method (Scenario 4), combining both preprocessing and region growing, consistently 

outperformed all other scenarios, showcasing the synergistic effect of these techniques in achieving the 

highest segmentation efficiency. These findings underscore the importance of each component in the proposed 

methodology, with the combination of preprocessing and region growth proving to be the most effective 

approach for accurate and robust VAT segmentation in abdominal MR images. 

 

 

 

4.3 Model Performance Evaluation and Analysis 

The charts (figure 7 a-d) illustrate the performance of a model during training and validation across various 

metrics. The training accuracy increases rapidly at the beginning and stabilizes quickly, indicating the model 

learns effectively from the training data. However, the validation accuracy, while initially rising, fluctuates 

significantly and doesn't reach the same level as the training accuracy, suggesting potential overfitting.  

The IoU coefficient, a measure of overlap between the predicted and actual values, shows a similar trend. 

While the training IoU increases and then plateaus, the validation IoU exhibits noticeable fluctuations, 

indicating that the model might struggle to generalize to unseen data. The Dice coefficient, another metric 

assessing the similarity between predicted and actual values, mirrors the pattern observed in the IoU. This 

reinforces the notion that the model's performance on validation data isn't as robust as its performance on 

training data. Finally, the loss curves show that the training loss decreases steadily, as expected. However, the 

validation loss, while initially declining, later rises and fluctuates. This again points to the possibility of 

overfitting, where the model becomes too specialized to the training data and performs poorly on new, unseen 

data. 

4.4 Model Performance Evaluation with Existing Methods 

The state-of-the-art analysis for VAT segmentation models indicates varying levels of performance across 

different methods (Table 5). In order to get trustful results, every state-of-the-art U-net and CNN variant is 

trained and tested with the two mentioned datasets, and average values are taken for comparison. SECANet by 

Hao Shen et al. achieves a high sensitivity of 0.91 but struggles with IoU at 0.80, showing limitations in 

overlap accuracy. Similarly, the MultiRes-Attention U-Net from Prakash et al. performs well with a DSC of 

0.87, though its IoU remains lower at 0.74. Other models like ACD 3D U-Net from Kafali et al. and nnU-Net 

by Somasundaram et al. face challenges with complex anatomical boundaries, resulting in sensitivities and 

specificities around 0.87-0.89. Ogunleye et al. propose a U-Net model with a relatively balanced performance, 

reaching an IoU of 0.85. Wu et al. with 2D-CDFNet and Christine Haugen et al.'s semi-automated approach 

struggle to exceed 0.88 in specificity. Notably, the proposed method outperforms existing models, with a DSC 

of 0.921, IoU of 0.955, and high sensitivity of 0.961, demonstrating its superior ability to address complex 

VAT segmentation challenges effectively.  
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Figure 7 (a) Training and Validation Accuracy Over Epochs, Figure 7 (b) Training and Validation IoU Over 

Epochs, Figure 7 (c) Training and Validation Dice Coefficient Over Epochs, Figure 7 (d) Training and 

Validation Loss Over Epochs and Comparative analysis with existing methods. 

Table 5: Comparison of VAT Segmentation Performance with Existing Methods 

Author Segmentation model name DSC IoU Sensitivity Specificity 

Hao Shen et al. [15] SECANet (based on U-Net) 0.87 0.80 0.91 0.88 

Prakash et al [16] MultiRes-Attention U-Net 0.87 0.74 0.89 0.81 

Kafali et al. [17] ACD 3D U-Net, 3D nnU-Net 0.85 0.73 0.87 0.79 

Somasundaram et al [18] nnU-Net 0.86 0.75 0.89 0.81 

Ogunleye et al. [19] U-Net 0.86 0.85 0.91 0.88 

Wu et al. [20] 2D-CDFNet 0.84 0.75 0.86 0.81 

Christine Haugen et al. 

[21] 

Semi-Automated Approach 0.82 0.76 0.88 0.83 

Ina Vernikouskayal. [22] U-Net-like CNN 0.90 0.85 0.92 0.91 

Hwang et al. [23] Custom 3D CNN 0.86 0.81 0.91 0.87 

Proposed method Proposed  0.921 0.955 0.961 0.948 
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Figure 8: Visual Comparison of Ground Truth and Proposed Segmentation Method for VAT on Four Abdominal MR 

Image Samples 

Figure 8 presents a visual comparison of the ground truth VAT segmentations (second row) with the 

corresponding segmentations produced by the proposed method (third row) for four abdominal MR image 

samples (first row). These samples are sourced from two different datasets, demonstrating the method's ability 

to generalize across varying image characteristics. The proposed method consistently demonstrates close 

alignment with the ground truth segmentations, accurately delineating the boundaries of VAT regions. This 

visual agreement is particularly evident in the third and fourth samples, where the method successfully 

captures the complex shapes and varying intensities of VAT. While minor discrepancies can be observed in 

some samples, such as a slight overestimation in the second sample, the overall results showcase the 

effectiveness of the proposed method in achieving precise VAT segmentation. This visual comparison not only 

confirms the quantitative results presented in previous sections but also highlights the qualitative strength of 

the proposed method in producing visually plausible and accurate segmentations of VAT in abdominal MR 

images.  

4.5 Discussion 

The experimental evaluation of VAT segmentation performance involved a comprehensive comparison of 

various existing methods against the proposed methodology. The comparison focused on key metrics like the 

DSC, IoU, sensitivity, and specificity, providing a multi-faceted assessment of segmentation accuracy. 

The analysis revealed that the proposed method, utilizing an optimized U-Net architecture with region 

growing, consistently outperformed existing approaches across all metrics. This superior performance is 

attributed to several factors: 

Bias Field Correction: The incorporation of homomorphic filtering for bias field correction effectively 

addressed intensity inhomogeneities in the MR images, enhancing the quality of input data and contributing to 

more accurate segmentation. 
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Optimized U-Net Architecture: The enhanced U-Net model, with its attention mechanisms and skip 

connections, proved adept at capturing subtle VAT patterns amidst complex anatomical structures. The 

attention mechanism allowed the model to focus on relevant features while suppressing noise, leading to 

improved boundary delineation. 

Region Growing Refinement: The integration of region growing significantly enhanced the segmentation 

results by refining the boundaries of VAT regions identified by the U-Net. This step effectively addressed 

potential over- or under-segmentation issues, ensuring a more precise representation of the actual VAT 

distribution. 

Diverse Datasets: The utilization of two distinct datasets, CHAOS and TCIA, contributed to the robustness of 

the proposed method. By training and evaluating diverse data, the model was able to generalize effectively to 

unseen cases, exhibiting high performance across a wider range of variations in VAT shape, size, and intensity. 

The visual comparison in Figure 8 further strengthens the quantitative findings. The proposed method 

demonstrates close alignment with the ground truth segmentations, accurately delineating VAT boundaries in 

diverse MR image samples. While minor discrepancies are observed in some cases, the overall results 

highlight the method's ability to produce visually plausible and accurate segmentations. 

However, the study acknowledges potential limitations. The performance of the proposed method may be 

affected by extreme variations in image quality or the presence of pathological conditions that alter the 

appearance of VAT. Future research could explore strategies to address these limitations and further enhance 

the robustness of the method. 

5. Conclusion 

The research addresses the critical problem of accurately segmenting and quantifying VAT from abdominal 

MRI images, which is essential for assessing obesity-related health risks. Traditional methods struggle with 

irregular shapes and intensity variations in VAT regions, leading to inaccurate results. The proposed 

methodology introduces a solution to these challenges through a three-step process: homomorphic filtering for 

intensity inhomogeneity correction, an optimized U-Net architecture with attention mechanisms for 

segmentation, and a region-growing algorithm for refining the segmentation. Two datasets were used in this 

study: the CHAOS dataset and TCIA dataset. These datasets provide diverse and challenging MRI scans, 

ensuring the model's ability to generalize and perform well on unseen data. The use of homomorphic filtering 

addresses the problem of intensity variations, which improves the quality of the input images. The enhanced 

U-Net architecture accurately segments VAT, even in cases with complex anatomical structures and varying 

intensities, while the region-growing algorithm refines the segmentation by focusing on VAT boundaries, 

addressing any over- or under-segmentation issues. The results of this work are highlighted by its superior 

performance in VAT segmentation. The method achieved high DSC values of 0.987 and 0.972 on the CHAOS 

and TCIA datasets, respectively. Similarly, the IoU values reached 0.986 and 0.963, indicating strong 

segmentation accuracy. Sensitivity values were 0.981 on the CHAOS dataset and 0.990 on the TCIA dataset, 

with specificity scores of 0.993 and 0.985, respectively. These results demonstrate a significant improvement 

over existing methods and provide a reliable tool for clinical applications in obesity-related health risk 

assessments. 
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