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attention mechanism, cycia] for assessing obesity-related health risks, as traditional methods struggle with irregular

region growing, shapes and varying intensities. The research utilizes a methodology consisting of three key
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e modulles: homom9rph1c ﬁltempg for intensity 1ghomogene1tyr correction, a U—NeF architecture Wlth
attention mechanisms for primary segmentation, and a region-growing algorithm for refining
segmentation. Homomorphic filtering effectively separates bias fields, enhancing image quality by
transforming multiplicative artifacts into additive ones and removing them with high-pass filtering.
This process ensures precise segmentation by maintaining high-frequency anatomical details. The
U-Net model incorporates attention mechanisms and skip connections to focus on VAT regions,
utilizing both local and global image contexts.The Combined Healthy Abdominal Organ
Segmentation (CHAOS) challenge dataset and the Cancer Imaging Archive (TCIA) dataset are used
to train and evaluate the model. It achieves a Dice Similarity Coefficient (DSC) of up to 0.985 on
the CHAOS dataset and 0.972 on the TCIA dataset, outperforming existing methods in terms of
segmentation accuracy. The region-growing algorithm further refines the segmentation by
expanding VAT regions from high-confidence seed points, ensuring accurate boundary delineation
and reducing noise. The study's results, evaluated using k-fold cross-validation, show that the
proposed methodology significantly improves VAT segmentation efficiency, achieving a median
DSC of 0.96 for the CHAOS dataset and 0.95 for the TCIA dataset in the most comprehensive
experimental scenario. Comparative analysis indicates that the proposed approach outperforms
other models, with higher sensitivity and specificity values, highlighting its potential for clinical
applications in obesity management..

1. Introduction

Visceral adipose tissue (VAT), the fat that accumulates around internal organs, is recognized as a significant
contributor to obesity-related health risks [1][2]. Unlike subcutaneous fat, which lies beneath the skin, VAT is
strongly associated with various metabolic disorders, including cardiovascular disease, type 2 diabetes, and
certain types of cancer [3][4]. As such, accurate assessment of VAT volume is crucial for understanding
individual health risks and tailoring personalized treatment plans. Magnetic resonance imaging (MRI) has
emerged as a valuable tool for non-invasive VAT quantification due to its ability to provide detailed anatomical
information without exposing patients to ionizing radiation [5]. However, analyzing MR images for VAT
segmentation and quantification is not possiblewithout its challenges. The inherent variability in VAT
distribution across individuals, coupled with image artifacts like intensity inhomogeneity, can impede accurate
identification and measurement [6][7]. As illustrated in Figure 1, abdominal MRI scans of individuals with
obesity often exhibit complex VAT morphology, highlighting the challenges in accurate segmentation and
guantification [8]. Additionally, traditional manual segmentation techniques are time-consuming and prone to
human error, highlighting the need for automated and reliable solutions [9]. Previous research efforts have
explored various approaches to automate VAT segmentation in MR images. These include classical image
processing techniques, such as thresholding and region growing, as well as more recent advances in machine
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learning, particularly deep learning models like U-Net [10][11][12]. While these methods have shown promise,
they often face limitations in accurately delineating VAT boundaries, especially in cases with complex shapes,
varying intensities, and overlaps with other tissues [14][15]. Moreover, the presence of intensity inhomogeneity
in MR images can further degrade the performance of these methods.

Figure 1 (a): Abdominal Figure 1(b): Illustration
MRI of an Individual of the Complex

with Obesity Morphology of VAT in
Abdominal MRI (Blue
Overlay)

The proposed methodology offers a robust solution to the challenges of VAT segmentation and
guantification in abdominal MR images. The integration of three key modules—bias field correction, U-Net
segmentation, and VAT quantification—enables a precise and reliable assessment of VAT. Intensity
inhomogeneity, a common artifact in MR images, can significantly hinder accurate VAT delineation. The
proposed method addresses this issue by employing homomorphic filtering for bias field correction. This
technique effectively removes the smooth, spatially varying intensity variations that can obscure VAT
boundaries, thereby improving the quality of the input data for subsequent segmentation. The core of the
methodology lies in the optimized U-Net architecture, designed specifically for VAT segmentation. Unlike
traditional U-Nets, this model incorporates multiple attention blocks at various stages, enabling it to focus on
subtle VAT patterns amidst complex anatomical structures. The attention mechanism enhances the model's
sensitivity to the subtle features that distinguish VAT from surrounding tissues. Additionally, skip connections
preserve fine-grained details during downsampling, ensuring sharp and accurate VAT boundaries in the final
segmentation.

Following the U-Net segmentation, the region-growing algorithm further refines the VAT boundaries.
This refinement step is crucial for addressing potential inaccuracies in the initial segmentation, such as over-
or under-segmentation. By iteratively expanding the VAT regions based on similarity criteria, the algorithm
ensures a more precise delineation of the VAT, leading to accurate volume quantification. The final module
focuses on quantifying the segmented VAT volume. It converts the segmented regions into a binary mask,
where each pixel represents either VAT or non-VAT tissue. The volume of each voxel is then calculated
based on the image resolution, and the total VAT volume is obtained by summing the volumes of all VAT
voxels. This quantitative assessment provides clinicians with a valuable tool for diagnosing and monitoring
obesity-related health risks.

According to the results, the proposed method excels in its ability to deliver high segmentation accuracy
and efficiency across different datasets. It achieves optimal performance within 300 epochs, indicating a well-
tuned learning process. The method consistently outperforms existing approaches, particularly in complex
cases involving VAT and non-VAT regions. The incorporation of k-fold cross-validation further strengthens
the model's generalization ability, as seen in the consistent improvement of performance metrics with
increasing folds. The combination of preprocessing with homomorphic filtering and region-growing
significantly enhances the segmentation results, reducing errors in boundary delineation and increasing
sensitivity and specificity. Additionally, the proposed method's superior DSC and Intersection over Union
(loU) highlight its ability to accurately capture VAT regions, outperforming other state-of-the-art models.

This paper is organized as follows: Section 2 reviews related work, highlighting the strengths and
limitations of existing methods for VAT segmentation. Section 3 presents the details of the proposed
methodology, including the integration of bias field correction, the U-Net architecture, and the region-growing
algorithm. Section 4 outlines the experimental setup and discusses the results of the proposed method in
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comparison with other approaches. Section 5 concludes the paper by summarizing the contributions and
suggesting potential directions for future work.

2. Literature review

Hao Shen et al. [15] developed a deep-learning model for the automatic segmentation of abdominal muscle
and fat. The developed algorithm, SECANEet, is based on the U-Net architecture and incorporates a selective
efficient channel attention block to improve segmentation accuracy. The methodology involves preprocessing
the abdominal CT and MR images by adjusting Hounsfield unit values and applying z-score normalization.
The main drawback of this model is its difficulty in accurately segmenting VAT regions, particularly in cases
with smaller VAT areas. This issue occurs because the U-Net model struggles to handle unbalanced pixel
proportions in the dataset, resulting in poor VAT segmentation. Additionally, the model tends to over- or
under-segment complex regions due to insufficient feature extraction during training on diverse anatomical
variations, which leads to errors in delineating VAT boundaries.

Prakash etal.[16] introduced a MultiRes-Attention U-Net to automate the segmentation of abdominal fat
compartments, particularly superficial subcutaneous adipose tissue (SSAT), deep subcutaneous adipose tissue
(DSAT), and VAT using MRI scans. The method integrates MultiRes blocks, attention gates, and a hybrid loss
function to handle varying shapes and sizes of fat deposits across abdominal regions. The method
demonstrated good generalization, but one key drawback is its missing segmentation in complicated regions.
This issue arises because the MultiRes-Attention U-Net, despite using attention gates, struggles with intricate
anatomical boundaries and the discontinuous nature of VAT, particularly around internal organs. Additionally,
the model’s dependence on 2D slice conversion from 3D MR scans reduces the ability to capture complex
spatial relationships, leading to segmentation inaccuracies in challenging regions.

Kafali et al. [17]developed an automated method for abdominal VAT segmentation and volume
guantification using MRI data. They proposed two 3D CNN models: ACD 3D U-Net and 3D nnU-Net. These
models utilize volumetric multi-contrast MRI inputs and attention mechanisms to segment both subcutaneous
and VAT. However, the authors did not fully address the complexity of anatomical structures in MRI scans.
The U-Net models face challenges with intensity variations and overlaps, leading to inaccuracies in VAT
boundary delineation.

Somasundaram et al. [18] developed an automated method for body composition analysis using nnU-Net
for segmentation of VAT, subcutaneous adipose tissue (SAT), liver, and muscles based on water-fat MRI. The
method utilized chemical shift-encoded MRI to extract quantitative metrics such as proton density fat fraction
(PDFF) and organ volumes. However, the proposed method struggles with complex VAT boundaries, which
often lead to over- or under-segmentation. This issue arises because the algorithm primarily relies on water-fat
separation, neglecting complex anatomical structures and intensity inhomogeneities.

Ogunleye et al [19] proposed an automated approach for VAT and SAT quantification in adolescents using
Dixon-based MRI and CNN. The method integrates region- and pixel-based segmentation, utilizing a U-Net
architecture to segment abdominal regions and classify adipose tissue. A major drawback of the approach is its
focus on single MRI slices, which limit the algorithm’s ability to capture complex VAT boundaries.

Wu et al.[20] propose an automated deep-learning method to segment SAT and VAT from Dixon MRI
scans in adolescents. The model, based on the 2D-CDFNet architecture, focuses on abdominal fat
segmentation using axial fat and water images. However, the primary drawback relates to the complexity of
VAT segmentation in adolescents, which presents challenges for precise boundary delineation. The
segmentation quality is further compromised by the lack of consideration for anatomical variations that occur
during puberty.

Christine Haugen et al. [21] method aims to segment and quantify adipose tissue (AT) in both mice and
human MRI images. It utilizes a semi-automated approach involving image thresholding, background noise
removal, object labelling, and manual editing to distinguish SAT from VAT. The algorithm calculates the
volume of each AT depot by counting the voxels after segmentation. However, a major drawback is the
reliance on manual editing, which introduces subjectivity and potential variability between users. This can lead
to inconsistencies in the results.
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Ina Vernikouskayal et al. [22] present a method for automated segmentation and quantification of
abdominal body fat compartments, differentiating SAT and VAT, from T1-weighted MRI using a U-Net. The
study successfully applied the algorithm to a dataset of both healthy controls and patients with amyotrophic
lateral sclerosis (ALS), demonstrating a significantly increased VAT/SAT ratio in the ALS group. However, a
potential drawback is the model's reliance on high-quality reference segmentations for training and validation.
The limitations of these reference segmentations, such as those caused by motion artifacts or poor image
contrast, could potentially impact the accuracy of the model's predictions.

Hwang et al. [23] developed a method for VAT segmentation using 3D CT images. The method aims to
provide a VAT volume measurement by automatically dividing three anatomical compartments: the lungs, soft
tissues, and post-vertebral spaces. The approach involves a three-step process, utilizing 3D CT images to
separate the regions. However, this method faces segmentation issues, particularly in regions where VAT and
SAT meet. These errors arise because the algorithm relies primarily on Hounsfield unit (HU) values, which do
not effectively calculate the complex boundaries between different tissue types.

Several deep learning models and algorithms have been developed to address VAT segmentation challenges
in abdominal scans from MRI and CT images. However, these approaches often face difficulties in handling
complex anatomical boundaries, intensity variations, and the discontinuous nature of VAT. Despite their
advancements, issues like over and under-segmentation in complex regions persist, highlighting the need for
more refined techniques.

3. Proposed Method

The proposed methodology consists of three main modules. The initial module addresses intensity
inhomogeneities in MR images using homomorphic filtering. Separating the bias field from anatomical details
enhances image quality and ensures accurate subsequent analysis. An optimized U-Net architecture,
incorporating attention mechanisms and skip connections, performs the primary VAT segmentation.

This deep learning model utilizes both local and global image features to identify VAT regions accurately,
even in challenging cases of irregular shapes and varying intensities. The final module quantifies the
segmented VAT volume. It converts the segmented regions into a binary mask, calculates the volume of
individual voxels based on image resolution, and sums these volumes to obtain the total VAT volume. This
provides a clinically relevant metric for assessing obesity-related health risks. Figure 2 shows the overall
process flow of the proposed automated VAT segmentation and quantification system.

3.1 Dataset details

The dataset for this research includes two well-known abdominal MRI datasets. From the dataset,obesity
patient MRI scans were chosen with the assistance of a skilled radiologist. The first dataset is from the
Combined Healthy Abdominal Organ Segmentation (CHAQS) challenge [27]. This dataset contains
abdominal CT and MRI (T1 and T2 weighted) images, but only the MR images are used in this study for
model training and testing. The images were acquired using a 1.5T Philips MRI scanner, producing 12-bit
DICOM images with a resolution of 256 x 256 pixels. The slice thickness varies between 5.5 and 9 mm, with
an average of 7.84 mm. The x-y pixel spacing ranges from 1.36 to 1.89 mm, averaging 1.61 mm. The dataset
includes between 26 and 50 slices per sequence, with an average of 36 slices. The second dataset is obtained
from the Cancer Imaging Archive (TCIA), which offers a wide variety of abdominal MRI scans [28]. The
second dataset was sourced from The Cancer Imaging Archive (TCIA), a publicly accessible repository of
medical images. The combination of these two datasets enhances the model's ability to generalize to unseen
data, ensuring its robustness and applicability in real-world scenarios.

3.2 Bias Field Correction Using Homomorphic Filtering

Bias field correction is crucial for subsequent VAT segmentation and quantification, ensuring that the
resulting measurements are accurate and reliable. The bias field, also known as intensity inhomogeneity, is a
low-frequency artifact that causes intensity variations across the image, leading to inaccurate segmentation
and quantification. In this research homomorphic filtering is used to separate the multiplicative bias field from
the true image, effectively correcting these intensity variations. Homomorphic filtering operates by
transforming the multiplicative components of the image into additive ones, applying a high-pass filter to
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remove the bias field, and then transforming the components back to their original domain [25]. This process
ensures that the bias field, which varies slowly across the image, is separated from the high-frequency
anatomical details. Convert the multiplicative bias field problem into an additive one using a logarithmic
transformation. Let I(x, y) be the observed image, R(x, y) be the true image, and B(x, y) be the bias field:

I(x,y) = R(x,y) - B(x,y) (1)

Attention mechanisms and
skip connections

VAT
quantification

U-Net with Region Growing
for VAT segmentation

Abdominal MR ‘ Preprocessing ’ ‘
Image Dataset

Evaluation Binary Mask Creation
and Voxel Volume Calculation

Ground Truth

Figure 2. Overall process flow of proposed Automated VAT Segmentation and Quantification from Abdominal MRI
using an Enhanced U-Net and Region Growing Algorithm

Homomorphic
Filtering

Applying the logarithm:
log(I(x, y)) = log(R(x, y)) + log(B(x, y)) (2)
Transform the logarithmically converted image into the frequency domain using the Fourier transform:
Fu,v) = F{log(I(x,»))} (3)

Apply a high-pass filter to F(u,v) to attenuate the low-frequency components (bias field) while preserving
the high-frequency components (true image details). Let H (u, v) be the high-pass filter:

Fy(w,v) =F(u,v) -Hw,v) (4)
Transform the filtered image back to the spatial domain using the inverse Fourier transform:
log(ly(x,»)) = F " {Fu(wv)} (5)

Apply the exponential function to revert the logarithmic transformation, resulting in the corrected image:

Iy (x,) = exp (log(Ix (x,))) (6)

By applying homomorphic filtering, the bias field correction module effectively removes intensity
inhomogeneities from the MRI images. Homomorphic filtering enhances the overall quality of the medical
images, making them suitable for precise analysis and diagnosis. This process addresses the challenge of
irregular shapes, overlaps, and variability in VAT, providing a consistent and robust approach to bias field
correction in medical imaging. Figure 3 shows the abdominal MR image before and after pre-processing.
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(A) (B)
Figure 3. (A) Original abdominal MR image before pre-processing; (B) noise-removed abdominal MR image
(after bias field correction).

3.3 Proposed U-Net architecture

The proposed U-Net architecture for VAT segmentation from MR images builds upon the established U-
Net framework, introducing key modifications to enhance accuracy and efficiency in handling the unique
challenges of VAT detection [26]. The input layer accepts 320x320 pixel medical images with two channels.
The initial convolutional block applies filters to extract essential features from the input data, transforming the
dimensions to 320x320x128. This block not only captures low-level features like edges and textures but also
introduces an attention mechanism, allowing the model to focus on regions of interest within the image.

lnput 320x320x2 Output 320x320x2

PEY WL VLY ) > '
»
J—
o N
a ’ﬂ

h 4 = =
ﬁ I >§g I I ﬁ Dropout 0.3
Al - I |:| Attention Block
pe 40x40x128 P ’ Upsamplin;
E ﬁ " Lo
- ‘ \Tj Maxpooling
A3 = ': l Conv2D,Sigmoid
G A A2 A3 ] A W I
Dropout 0.3
ad —> 16 | = P
20x20x128 20x20x128 =» Skip conncetion

Figure 4 (a) Proposed attention-based U-net architecture for VAT segmentation from abdominal MR images.
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| Batch Normalization ‘
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J L Relu Activation
v

Dense layer

Qutput

Figure 4 (b) Convolution block details of Figure 4 (c) Attention block details of proposed
proposed U-net architecture. U-net architecture.

The downsampling path progressively reduces the spatial dimensions of the feature maps through max-
pooling, maintaining a consistent depth of 128 channels. This hierarchical approach allows the model to
capture both local details and broader contextual information. The midblock, a crucial component,
incorporates multiple attention blocks (ABs) with varying channel depths. Each AB utilizes global average
pooling to summarize features, followed by dense layers and activation functions to generate attention maps.
These maps modulate the input features, emphasizing relevant information and suppressing noise. The
multiple ABs with different channel depths enable the model to capture attention at various scales,
contributing to a more detailed understanding of VAT distribution. The upsampling path mirrors the
downsampling path, increasing the spatial dimensions while refining the segmentation details. Dropout layers
help mitigate overfitting by randomly deactivating neurons during training. Skip connections facilitate the
fusion of high-level semantic information from the midblock with low-level spatial details from the
downsampling path, ensuring accurate boundary delineation. The final output layer generates a segmentation
map with the same dimensions as the input image. The sigmoid activation function ensures pixel values
represent probabilities belonging to the VAT class, enabling precise localization of VAT regions.

The proposed U-Net architecture for VAT segmentation from MR images has several key enhancements.
Figure 4 (a) shows the proposed attention-based U-net architecture for VAT segmentation from abdominal
MR images. Figure 4 (b) shows the convolution block details of the proposed U-net architecture and Figure 4
(c) shows the attention block details of the proposed U-net architecture.

Multiple attention blocks integrated at various stages improve the model's ability to detect subtle VAT
patterns amidst complex intensity variations often seen in MR images. Using two-channel input data allows
for incorporating additional information from MR images, potentially enhancing tissue contrast and
segmentation accuracy. Skip connections preserve fine-grained details during downsampling, ensuring sharp
and accurate VAT boundaries in the final segmentation. An optimized midblock with varying attention block
depths enables efficient capture of contextual information at different scales, facilitating the handling of
diverse VAT shapes and sizes. These combined improvements result in a robust and accurate solution for
VAT segmentation from MR images.
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3.4 Region Growing algorithm and post-processing

The region-growing module in the proposed methodology focuses on refining the initial segmentation of
VAT obtained from the U-Net model. This module addresses the unique challenges posed by irregular shapes,
overlaps, and variability in VAT regions, ensuring that the final segmentation is both accurate and clinically
useful. Region growing is a pixel-based image segmentation technique that starts with an initial set of seed
points and expands these regions by including neighboring pixels that meet a certain similarity criterion. This
method is particularly effective for medical imaging, where precise delineation of tissue boundaries is crucial.
Seed Point Selection: The process begins with selecting seed points within the VAT regions identified by the
U-Net model. These seed points serve as the starting locations for the region growing process. In the context
of VAT segmentation, seed points can be chosen based on high-confidence areas within the U-Net output,
where the probability of being VAT is significantly high.

Similarity Criterion: A similarity criterion determines whether neighboring pixels should be included in the
growing region. For VAT segmentation, this criterion is typically based on intensity values and spatial
proximity. Let I(x,y) denote the intensity of a pixel at location (x,y), and ls.eqbe the intensity of the seed pixel.
Anpixel (x,y) is included in the region if it satisfies:

l1(x',y) — Iseed| < € (7)

where ¢ is a predefined threshold. This ensures that only pixels with similar intensity values to the seed point
are included in the VAT region.

Region Growing Algorithm: The algorithm iterates over the image, starting from the seed points and
expanding the regions by including neighboring pixels that meet the similarity criterion. The process
continues until no more pixels can be added to any of the regions.

Post-Processing: After the region growing algorithm completes, the resulting binary mask M may contain
small isolated regions or noise. A morphological opening operation (erosion followed by dilation) can be
applied to remove these artifacts and ensure that the VAT regions are smooth and well-defined.

Algorithm 1 Region Growing Algorithm

Set the initial seed points S = {(x;,y;)} based on the U-Net output.

2: Create an empty binary mask M of the same dimensions as the input image, initialized to zero.
3: Define a queue Q to manage the region growing process.

4: for each seed point (x;,yi) €Sdo5:  Add (x,yi) to Q.

6: end for

7: while Q is not empty do

8: Remove the front element (x,y) from Q.

e} for each neighbor (X,y) of (x,y) do

10:if (xy) is within image bounds and M(x,y) = 0 and [I(X,y) — I(x,y)| < € then

11: Set M(x,y) = 1.
12: Add (x,y) to Q.
13: end if

14: end for

15: end while

By incorporating region growing, the proposed methodology ensures that VAT segmentation is refined and
accurate, even in challenging cases with irregular shapes and varying intensities. This module complements
the initial U-Net segmentation by addressing local intensity variations and spatial continuity, leading to more
precise and clinically relevant VAT quantification.

3.5 VAT guantification

The VAT quantification module is designed to measure the volume of VAT accurately after segmentation
and refinement using the U-Net. The goal is to calculate the VAT volume within the medical images,
providing a quantitative assessment that can aid in diagnosing and monitoring obesity-related health risks.
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Binary Mask Creation: The refined VAT regions from the previous steps are transformed into a binary mask,
denoted as M. This mask assigns a value of 1 to pixels within the VAT region and 0 to pixels outside the VAT
region. Mathematically, this is represented as:

.. 1 if pixel (i,j)belongs to VAT region
M(,j) = 8
@) { 0 otherwise ®

where (i, j) are the coordinates of a pixel in the image. Figure 5 illustrates a simplified representation of the
binary mask used in the VAT quantification algorithm.

01010 |0

Figure 5. Binary Mask Representation of VAT Segmentation

The blue region corresponds to the VAT mask (M), where each pixel is assigned a value of 1, indicating the
presence of VAT. Conversely, the white region represents the non-VAT region, with each pixel assigned a
value of 0.

Voxel Volume Calculation: Each pixel in the image corresponds to a three-dimensional voxel in the actual
scanned volume. A voxel is a three-dimensional equivalent of a pixel. It has dimensions in width, height, and
depth (usually denoted as dxxdyxdz). Each voxel in a medical image represents a small volume of tissue in
the scanned body. The segmented VAT region consists of a set of connected voxels that have been identified
by the U-Net and refined by the region-growing algorithm.

With an in-plane resolution of rxr (pixel width and height) and slice thickness t, the voxel volume is
calculated as:

Vvoxel = r2 * t (9)

VAT Volume Calculation: The total VAT volume, VVAT, is calculated by summing the volumes of all voxels
identified as VAT within the binary mask M. The algorithm first counts the number of pixels in the mask
labelled as VAT (value 1), denoted as NVAT. Then, the total VAT volume is calculated as:

Vyar = Nyar * Vioxel (10)

Algorithm 2. VAT guantification

1. Initialization:
Set VVAT to0
Obtain the binary mask M from the refined segmentation.
2. Voxel Iteration:
For each pixel (i,j)in M
If M(i,j) == 1
Increment Nyyr
3. Volume Calculation:
Calculate V,,,.; based on the image resolution (r,t)
Calculate VVAT = NVAT * Vvoxel
4. Output:
The final value of V47 represents the total volume of VAT in the image.
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By integrating these steps, the VAT quantification module provides a comprehensive and reliable
assessment of VAT volume, contributing valuable information for clinical diagnosis and treatment planning.
Figure 6 explains the detailed process flow of the proposed VAT quantification system. Table 1 summarizes
the list of symbols and notations in this article.

A
Obtain Refined VAT Mask
M)

T
N

Set VAT Volume (VAT) = 1
and (NVAT)=0

-

4

For each pixel (i, j) in M

1

y
If M(1, j) = 1 then
Increment VVAT

N

Calculate Voxel Volume
(Vvoxel)

L

<
A

Calculate VAT Volume
(VVAT)
-
N
Output VVAT

Figure 6. VAT quantification process flow.

Table 1. List of symbols and notations

Symbol/Notation

Description

I1(x,y) Observed image intensity at pixel location (x,y).
R(x,y) True image intensity at pixel location (x, y).
B(x,y) Bias field at pixel location (x, y).
F(u,v) Fourier transform of the logarithmic image.
H(u,v) High-pass filter applied in the frequency domain.
Fy(u,v) High-pass filtered Fourier transform.
Iy(x,y) Corrected image after applying homomorphic filtering.
Nyar Number of voxels classified as VAT in the binary mask.
Vioxel Volume of a single voxel based on image resolution and slice thickness.
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Vyar Total VAT volume obtained from the segmented regions.
M(i,j) Binary mask, where M (i, j) = 1 indicates a pixel belonging to VAT region.

T Pixel width and height (in-plane resolution).
t Slice thickness in the image volume.
€ Predefined threshold for intensity similarity in the region-growing algorithm.

log Logarithmic transformation function.

exp Exponential function to revert the logarithmic transformation.

o(x) Sigmoid activation function used in U-Net for pixel classification.

F1 Inverse Fourier transform.

4. Results

The experimental setup for this research involved utilizing a Dell G15 computer equipped with an i5
processor, 16GB of RAM, and an NVIDIA QUADRO RTX 6000 graphics card with 24GB of VRAM. The
operating system used was Windows 11.

During the training phase, 500 epochs were initially allocated, but it was observed that optimal
performance was achieved within 300 epochs for all models. Following training, the segmentation efficiency
of both the proposed and existing methods was assessed for VAT and non-VAT regions in abdominal MR
images. Two distinct datasets were employed to thoroughly evaluate the performance of each method. A
comparative analysis was conducted, including the proposed approach and various existing methods from the
literature including Hao Shen et al. [15], Prakash et al [16], Kafali et al. [17], Somasundaram et al [18],
Ogunleye et al. [19], Wu et al. [20], Christine Haugen et al. [21], Ina Vernikouskayal. [22], and Hwang et al.
[23].

To ensure a comprehensive evaluation, multiple accuracy metrics were utilized, including the Dice
Similarity Coefficient (DSC), Intersection over Union (loU), Sensitivity, and Specificity. These metrics
provide insights into the agreement between the predicted segmentation and the ground truth, as well as the
ability to correctly identify VAT regions while minimizing false positives. The following equations are used to
calculate the above performance metrics.

2.TP
bsc = 2-TP +FP +FN (11)
IoU =——1— (12)
TP +FP +FN
Sensitivity = %(13)
Specificity = % (14)

The hyperparameters for the proposed method were carefully selected. The training process used 500
epochs, although peak performance was reached before this limit. A learning rate of 0.0001 and a momentum
value of 0.9 were employed to optimize the learning process. The Adam optimizer was chosen for its
effectiveness in training deep learning models, particularly for image segmentation tasks.

4.1 k-Fold Cross-Validation

Tables 2 and 3 present a comprehensive assessment of the proposed method's performance using k-fold
cross-validation on two distinct datasets: CHAOS and TCIA. Each dataset was evaluated across different folds
(k=2, 3, 4, and 5), providing a robust evaluation of the method's consistency and generalization capabilities.
For the CHAOS dataset, the method consistently achieved high DSC and loU values across all folds,
indicating excellent agreement between the predicted VAT segmentation and the ground truth. Sensitivity and
specificity values also remained high, suggesting that the model effectively identified VAT regions while

2837 |Page



SEE/PY . . . | |
Automated Visceral Adipose Tissue Segmentation and Quantification from Abdominal MRI using an
Enhanced U-Net and Region-growing
SEEJPHVolume XXV S1, 2024, ISSN: 2197-5248;Posted:05-11-2024

minimizing false positives and false negatives. Notably, the performance improved as the number of folds
increased, highlighting the method's ability to learn and generalize from the data. Similarly, on the TCIA
dataset, the method demonstrated strong performance across all folds, with consistently high DSC and loU
values. Sensitivity and specificity remained high, further affirming the model's accuracy in identifying VAT

regions and distinguishing them from other tissues.

Table 2: K-Fold Cross-Validation Performance of VAT Segmentation on CHAOS Dataset

k- DSsC loU Sensitivity | Specificity

Fold

K=2 0.923 | 0.921 £ | 0.954 0.959
+0.07 | 0.19

K=3 |0.951 |0.932 +|0.961 0.973
+0.06 | 0.12

K=4 |0.961 | 0.951 £ | 0.985 0.977
+0.08 | 0.12

K=5 |0.987 | 0.986 + | 0.981 0.993
+0.05 | 0.19

Table 3: K-Fold Cross-Validation Performance of VAT Segmentation on TCIA Dataset

k-Fold DSC loU Sensitivity Specificity
K=2 0.921 + 0.09 0.933 £ 0.02 0.942 0.938
K=3 0.932 +£0.11 0.941+ 0.05 0.961 0.946
K=4 0.956 + 0.21 0.957 + 0.07 0.982 0.974
K=5 0.972+0.16 0.963 £ 0.11 0.990 0.985

4.2 VAT segmentation efficiency analysis using different experimental scenarios

The experimental design aimed to thoroughly assess the impact of each component in the proposed method
by evaluating four distinct scenarios. In the first scenario, both preprocessing and region growing were
excluded, isolating the performance of the U-Net model alone. The second scenario excluded preprocessing
but included region growing, highlighting the contribution of boundary refinement. The third scenario
involved preprocessing without region growing, emphasizing the importance of image enhancement. Finally,
the fourth scenario combined both preprocessing and region growing, representing the full proposed
methodology. This approach allowed for a granular analysis of the contribution of each step to the overall
performance. The results, presented as the median DSC for VAT across both datasets and 5-fold cross-
validation, along with the global average, provided a comprehensive comparison.

Table 4 illustrates the impact of different components on VAT segmentation efficiency. The baseline U-Net
model (Scenario 1) achieved reasonable performance, with median DSC values of 0.91 for CHAQOS and 0.89
for TCIA datasets. However, the incorporation of region growing (Scenario 2) consistently improved the
median DSC, highlighting its effectiveness in refining the segmentation results. Similarly, the addition of
preprocessing (Scenario 3) led to notable improvements compared to the baseline, demonstrating the positive
impact of image enhancement on segmentation accuracy.

Table 4: Comparative Analysis of VAT Segmentation Efficiency Across Different Experimental Scenarios and Datasets

Dataset Scenario | Fold1 | Fold2 | Fold3 | Fold4 | Fold 5 Median DSC | Global Average
CHAOS 1 0.86 0.88 0.91 0.92 0.93 0.91 0.901

CHAOS 2 0.91 0.92 0.92 0.93 0.95 0.92 0.925

CHAOS 3 0.92 0.94 0.94 0.95 0.96 0.94 0.941

CHAOS 4 0.94 0.94 0.97 0.97 0.98 0.95 0.958

TCIA 1 0.85 0.88 0.89 0.90 0.91 0.89 0.886

TCIA 2 0.89 0.91 0.92 0.93 0.94 0.92 0.918

TCIA 3 0.90 0.92 0.94 0.95 0.96 0.94 0.922

TCIA 4 0.93 0.94 0.95 0.96 0.97 0.95 0.95
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The full proposed method (Scenario 4), combining both preprocessing and region growing, consistently
outperformed all other scenarios, showcasing the synergistic effect of these techniques in achieving the
highest segmentation efficiency. These findings underscore the importance of each component in the proposed
methodology, with the combination of preprocessing and region growth proving to be the most effective
approach for accurate and robust VAT segmentation in abdominal MR images.

4.3 Model Performance Evaluation and Analysis

The charts (figure 7 a-d) illustrate the performance of a model during training and validation across various
metrics. The training accuracy increases rapidly at the beginning and stabilizes quickly, indicating the model
learns effectively from the training data. However, the validation accuracy, while initially rising, fluctuates
significantly and doesn't reach the same level as the training accuracy, suggesting potential overfitting.

The loU coefficient, a measure of overlap between the predicted and actual values, shows a similar trend.
While the training loU increases and then plateaus, the validation loU exhibits noticeable fluctuations,
indicating that the model might struggle to generalize to unseen data. The Dice coefficient, another metric
assessing the similarity between predicted and actual values, mirrors the pattern observed in the loU. This
reinforces the notion that the model's performance on validation data isn't as robust as its performance on
training data. Finally, the loss curves show that the training loss decreases steadily, as expected. However, the
validation loss, while initially declining, later rises and fluctuates. This again points to the possibility of
overfitting, where the model becomes too specialized to the training data and performs poorly on new, unseen
data.

4.4 Model Performance Evaluation with Existing Methods

The state-of-the-art analysis for VAT segmentation models indicates varying levels of performance across
different methods (Table 5). In order to get trustful results, every state-of-the-art U-net and CNN variant is
trained and tested with the two mentioned datasets, and average values are taken for comparison. SECANet by
Hao Shen et al. achieves a high sensitivity of 0.91 but struggles with loU at 0.80, showing limitations in
overlap accuracy. Similarly, the MultiRes-Attention U-Net from Prakash et al. performs well with a DSC of
0.87, though its loU remains lower at 0.74. Other models like ACD 3D U-Net from Kafali et al. and nnU-Net
by Somasundaram et al. face challenges with complex anatomical boundaries, resulting in sensitivities and
specificities around 0.87-0.89. Ogunleye et al. propose a U-Net model with a relatively balanced performance,
reaching an loU of 0.85. Wu et al. with 2D-CDFNet and Christine Haugen et al.'s semi-automated approach
struggle to exceed 0.88 in specificity. Notably, the proposed method outperforms existing models, with a DSC
of 0.921, loU of 0.955, and high sensitivity of 0.961, demonstrating its superior ability to address complex
VAT segmentation challenges effectively.
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Figure 7 (a) Training and Validation Accuracy Over Epochs, Figure 7 (b) Training and Validation loU Over
Epochs, Figure 7 (c) Training and Validation Dice Coefficient Over Epochs, Figure 7 (d) Training and
Validation Loss Over Epochs and Comparative analysis with existing methods.

Table 5: Comparison of VAT Segmentation Performance with Existing Methods

Author Segmentation model name DSC | loU | Sensitivity | Specificity
Hao Shen et al. [15] SECANEet (based on U-Net) 0.87 |0.80 | 0.91 0.88
Prakash et al [16] MultiRes-Attention U-Net 0.87 | 0.74 | 0.89 0.81
Kafali et al. [17] ACD 3D U-Net, 3D nnU-Net 0.85 |0.73 | 0.87 0.79
Somasundaram et al [18] nnU-Net 0.86 | 0.75 | 0.89 0.81
Ogunleye et al. [19] U-Net 0.86 | 0.85 | 0.91 0.88
Wau et al. [20] 2D-CDFNet 0.84 | 0.75 |0.86 0.81
Christine Haugen et al. | Semi-Automated Approach 0.82 |0.76 | 0.88 0.83
[21]

Ina Vernikouskayal. [22] U-Net-like CNN 0.90 | 0.85 |0.92 0.91
Hwang et al. [23] Custom 3D CNN 0.86 | 0.81 |0.91 0.87
Proposed method Proposed 0.921 | 0.955 | 0.961 0.948
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Figure 8: Visual Comparison of Ground Truth and Proposed Segmentation Method for VAT on Four Abdominal MR
Image Samples

Figure 8 presents a visual comparison of the ground truth VAT segmentations (second row) with the
corresponding segmentations produced by the proposed method (third row) for four abdominal MR image
samples (first row). These samples are sourced from two different datasets, demonstrating the method's ability
to generalize across varying image characteristics. The proposed method consistently demonstrates close
alignment with the ground truth segmentations, accurately delineating the boundaries of VAT regions. This
visual agreement is particularly evident in the third and fourth samples, where the method successfully
captures the complex shapes and varying intensities of VAT. While minor discrepancies can be observed in
some samples, such as a slight overestimation in the second sample, the overall results showcase the
effectiveness of the proposed method in achieving precise VAT segmentation. This visual comparison not only
confirms the quantitative results presented in previous sections but also highlights the qualitative strength of
the proposed method in producing visually plausible and accurate segmentations of VAT in abdominal MR
images.

4.5 Discussion

The experimental evaluation of VAT segmentation performance involved a comprehensive comparison of
various existing methods against the proposed methodology. The comparison focused on key metrics like the
DSC, loU, sensitivity, and specificity, providing a multi-faceted assessment of segmentation accuracy.

The analysis revealed that the proposed method, utilizing an optimized U-Net architecture with region
growing, consistently outperformed existing approaches across all metrics. This superior performance is
attributed to several factors:

Bias Field Correction: The incorporation of homomorphic filtering for bias field correction effectively
addressed intensity inhomogeneities in the MR images, enhancing the quality of input data and contributing to
more accurate segmentation.
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Optimized U-Net Architecture: The enhanced U-Net model, with its attention mechanisms and skip
connections, proved adept at capturing subtle VAT patterns amidst complex anatomical structures. The
attention mechanism allowed the model to focus on relevant features while suppressing noise, leading to
improved boundary delineation.

Region Growing Refinement: The integration of region growing significantly enhanced the segmentation
results by refining the boundaries of VAT regions identified by the U-Net. This step effectively addressed
potential over- or under-segmentation issues, ensuring a more precise representation of the actual VAT
distribution.

Diverse Datasets: The utilization of two distinct datasets, CHAQOS and TCIA, contributed to the robustness of
the proposed method. By training and evaluating diverse data, the model was able to generalize effectively to
unseen cases, exhibiting high performance across a wider range of variations in VAT shape, size, and intensity.

The visual comparison in Figure 8 further strengthens the quantitative findings. The proposed method
demonstrates close alignment with the ground truth segmentations, accurately delineating VAT boundaries in
diverse MR image samples. While minor discrepancies are observed in some cases, the overall results
highlight the method's ability to produce visually plausible and accurate segmentations.

However, the study acknowledges potential limitations. The performance of the proposed method may be
affected by extreme variations in image quality or the presence of pathological conditions that alter the
appearance of VAT. Future research could explore strategies to address these limitations and further enhance
the robustness of the method.

5. Conclusion

The research addresses the critical problem of accurately segmenting and quantifying VAT from abdominal
MRI images, which is essential for assessing obesity-related health risks. Traditional methods struggle with
irregular shapes and intensity variations in VAT regions, leading to inaccurate results. The proposed
methodology introduces a solution to these challenges through a three-step process: homomorphic filtering for
intensity inhomogeneity correction, an optimized U-Net architecture with attention mechanisms for
segmentation, and a region-growing algorithm for refining the segmentation. Two datasets were used in this
study: the CHAOS dataset and TCIA dataset. These datasets provide diverse and challenging MRI scans,
ensuring the model's ability to generalize and perform well on unseen data. The use of homomorphic filtering
addresses the problem of intensity variations, which improves the quality of the input images. The enhanced
U-Net architecture accurately segments VAT, even in cases with complex anatomical structures and varying
intensities, while the region-growing algorithm refines the segmentation by focusing on VAT boundaries,
addressing any over- or under-segmentation issues. The results of this work are highlighted by its superior
performance in VAT segmentation. The method achieved high DSC values of 0.987 and 0.972 on the CHAOS
and TCIA datasets, respectively. Similarly, the loU values reached 0.986 and 0.963, indicating strong
segmentation accuracy. Sensitivity values were 0.981 on the CHAOS dataset and 0.990 on the TCIA dataset,
with specificity scores of 0.993 and 0.985, respectively. These results demonstrate a significant improvement
over existing methods and provide a reliable tool for clinical applications in obesity-related health risk
assessments.
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