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ABSTRACT 
The early and accurate diagnosis of lung cancer, a significant contributor to global cancer-related mortality, 

remains a paramount challenge in healthcare. Conventional diagnostic methods often lack the sensitivity 

required for early-stage detection, prompting the exploration of non-invasive alternatives. Leveraging 

advancements in genomics and bioinformatics, this study investigates the potential of deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA) analysis for early-stage lung cancer diagnosis. Two distinct datasets are 

utilized: GSE4115, comprising gene expression data from bronchial airway epithelial cells of smokers, and 

GSE33356, focusing on genomic alterations in Taiwanese female non-smoking lung cancer patients. The 

research employs comprehensive data pre-processing and feature reduction techniques, including 

normalization and Kernel Principal Component Analysis (KPCA). Subsequently, an ensemble of diverse 

learners, including Random Forests, AdaBoost, Bagging, Support Vector Machines (SVMs), and Neural 

Networks, is trained on the original datasets. A novel ensemble stacking approach is proposed, wherein initial 

predictions from the base learners are combined through logistic regression - the meta-learner to enhance 

predictive performance. The study aims to contribute to advancements in lung cancer detection by providing 

a more precise and non-invasive diagnostic method. By integrating DNA and RNA analysis with ensemble 

learning techniques, the research endeavours to enhance medical outcomes and potentially save lives through 

early-stage lung cancer detection.  

 

1. Introduction 

The identification of cancer continues to be a continuous challenge in the field of healthcare, where early and 

precise diagnosis is essential for effective treatment and better patient results [1].  Lung cancer is a major concern 

for global health, since it is responsible for the second greatest number of cancer-related deaths globally, 

according to the World Health Organization (WHO).  Conventional techniques for identifying lung cancer 

typically depend on invasive procedures such as biopsies or chest X-rays. Although these approaches offer 

valuable data, they may not be appropriate for detecting early-stage conditions due to their limited sensitivity or 

patients' hesitancy to undertake invasive treatments. 

Advancements in genomics and bioinformatics have recently provided new opportunities for detecting cancer 

without intrusive procedures, by analyzing DNA and RNA information. These datasets can identify fundamental 

molecular changes linked to the growth and advancement of cancer.  DNA, the fundamental genetic code, can 

contain mutations that interfere with regular cellular functions and result in unregulated cell proliferation, a 

characteristic feature of cancer [2].  RNA, which serves as a bridge between DNA and proteins, provides insight 

into the condition of cells and can uncover alterations in the patterns of gene expression that are linked to the 

progression of cancer [3]. Through the examination of DNA and RNA mutations, scientists can identify lung 

cancer in its early stages, enabling more efficient therapy and enhancing the outlook for patients [4]. This study 

investigates the possibility of using DNA and RNA information to diagnose lung cancer without the need for 

intrusive procedures. Our proposal involves utilizing an ensemble stacking technique to capitalize on the 

advantages of various ML techniques. Ensemble approaches combine the predictions of many learning models 

to attain higher accuracy and resilience in comparison to individual algorithms [5]. 

This study focuses on training a diverse ensemble of learners directly on the original DNA and RNA datasets.  

These learners will include Random Forests (RFs), AdaBoost, Bagging, Support Vector Machines (SVMs), and 
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Neural Networks [6].  These algorithms incorporate several learning paradigms, each possessing its strengths 

and weaknesses.  Random Forests exhibit sensitivity to overfitting and effectively manage high-dimensional 

data. AdaBoost employs an iterative process to retrain the model, with a specific emphasis on examples that 

were previously categorized incorrectly [7]. Bagging is a technique that generates numerous models by using 

random portions of the data, which helps to decrease variance. Support Vector Machines (SVMs) are highly 

effective in identifying the best possible hyperplanes for categorization in spaces with a large number of 

dimensions.  Neural networks, which draw inspiration from the human brain, can acquire knowledge about 

intricate non-linear connections between characteristics and results [8]. Our theory is that by combining the 

predictions of diverse algorithms using ensemble stacking with a radial basis function (RBF) kernel, we can 

obtain higher accuracy and robustness in detecting lung cancer compared to using a single learning model [9].  

The RBF kernel is commonly used for non-linear data, enabling the model to effectively capture intricate 

connections between DNA and RNA characteristics and the stage of lung cancer [10], [11]. 

The objective of this research is to make a valuable contribution to the continuous endeavour of enhancing 

approaches for detecting lung cancer. Through the utilization of DNA and RNA datasets and the capabilities of 

ensemble learning, our objective is to provide a more precise and non-invasive method for diagnosing lung 

cancer at an early stage.  Consequently, this could result in enhanced medical outcomes and potentially save 

lives. 

2. Literature Survey 

DNA 

Lung cancer is still one of the most frequently encountered devastating kinds of cancer worldwide. Revolutionary 

progress has been made in the field of cancer diagnosis, specifically concerning lung cancer, by combining 

DNA-based techniques with machine learning (ML) algorithms. Through ensemble learning, multiple classifiers 

can be trained on bootstrap samples, mitigating overfitting. At the start of the 2000s, M. P. S. Brown et al. [12] 

made a big discovery in the field of cancer study. The authors used SVM to sort microarray data and were able 

to tell the difference between cancer cells and normal cells with over 90% accuracy. The author's SVM model 

did better than other methods, showing that the SVM is good at figuring out complicated patterns in high-

dimensional microarray datasets. Researchers Rongjun Chen [6] developed an SVM model for classifying lung 

cancer patients based on ctDNA methylation profiles.  In the 2021 paper by D. Mathios et al. [13] the authors 

employed an SVM classifier to analyze a dataset from 365 individuals. To distinguish between small cell and 

non-small cell lung cancer. The 2021 study by Ferid Ben Ali et al., [14] explored machine-learning algorithms 

for classifying lung cancer types using DNA microarray data. Notably, Support Vector Machines (SVM) and 

Deep Neural Networks (DNN) exhibited exceptional performance Building on this foundation in 2008, P. P. 

Anglim et al. [15] employed the MethyLight technique to investigate DNA methylation in squamous cell lung 

cancer (SCLC) and adjacent non-tumor lung tissues, identifying 22 significantly hypermethylated loci. Utilizing 

a random forest classifier, they developed a panel of eight highly significant hypermethylated markers (GDNF, 

MTHFR, OPCML, TNFRSF25, TCF21, PAX8, PTPRN2, PITX2) to discriminate SCLC from non-tumor 

tissues. In the 2013 paper by A. A. Ponomaryova et al. [16] the potential of circulating DNA methylation, 

particularly in genes RARB2 and RASSF1A, as a diagnostic biomarker for lung cancer is explored. The use of 

additional algorithms such as PCA, Monte Carlo test, and MANOVA supported these findings. 

J. Cabrera [17] In 2015 the Lung Cancer Classification Tool (LCCT), was a machine learning system using 

Support Vector Machines (SVM) to classify lung cancer subtypes from gene expression data. Quantile 

Normalization was found to be the most effective pre-processing method, achieving a high accuracy of 93.389%, 

aiming to improve lung cancer diagnosis and treatment selection. S. Wu et al. [18] 2018 proposed a gene 

selection method for cancer classification using L1/2 regularization in sparse logistic regression. A. A. ABRO 

et al. [19] 2020 introduced a stacking-based ensemble learning method for outlier detection, incorporating 

Rotation Forest, Random Forest, Bagging, Boosting, and Logistic Regression as base learners, along with a 

Meta-learner logistic regression. This research suggests the potential for hybridizing ensemble learning methods 

for continued performance enhancement in outlier detection tasks. 

In their 2020 study, the authors Q. Wang et al. [20] introduced a method that combines random forest ensemble 

learning with a self-paced bootstrap sampling strategy. F. Ben Ali et al. [14] 2022 compared machine learning 

algorithms, including Support Vector Machines (SVM), Random Forest (RF), k-nearest Neighbours (kNN), 

Deep Neural Networks (DNN), and Convolutional Neural Networks (CNN), for lung cancer type classification 
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using DNA microarray data. The study utilizes Principal Component Analysis (PCA) for dimensionality 

reduction and addresses dataset imbalance with SMOTE. In their 2023 study, authors K. Mary Sudha Rani and 

[11] utilized gene expression data from 192 smoking subjects to develop a lung cancer identification model. 

Employing Data Pre-processing, Feature Reduction via Kernel Principal Component Analysis, and Ensemble 

Learning with Random Forest and AdaBoost classifiers. The approach, led by N. Yao et al. [21] 2023 used a 

hybrid feature selection method combining Pearson's Correlation with univariate filters or recursive feature 

elimination, along with ensemble classifiers like Stochastic Gradient Boosting, Random Forest, and Support 

Vector Machine showcased promise for early lung cancer diagnosis and further exploration in bioinformatics 

methodologies. 

In 2015 Z. Cai et al. [22] employed methods like Multi-category Receiver Operating Characteristic (Multi-ROC), 

Random Forests (RFs), and Maximum Relevance and Minimum Redundancy (mRMR) for feature selection, 

enhancing the discovery of accurate biomarkers. By combining ensemble-based approaches with Incremental 

Feature Selection (IFS), the research achieves a robust classification model capable of accurately distinguishing 

between lung adenocarcinoma, squamous cell lung cancer, and small cell lung cancer. The paper, authored by 

H. Hijazi et al. [23] 2012 utilizes ensemble learning to classify cancer subtypes from gene expression data, 

employing a mix of classifiers like decision trees, neural networks, and Random Forests, which combines 

bagging with the random selection of features to form an ensemble of decision trees, thus improving accuracy 

and identifying potential biomarkers. Authored by Mai Abdulla and Mohammad T. Khasawneh in 2020 

introduced G-Forest, a novel ensemble classifier combining Genetic Algorithm with Random Forest to select 

informative features with low cost, outperforming state-of-the-art algorithms in accuracy and cost-effectiveness. 

The paper by S. Wang et al. [24] 2023 presents a methodology employing machine learning algorithms including 

a Generalised Linear Model (GLM), Gradient Boosting Machine (GBM), Random Forest, Deep Learning, and 

eXtreme Gradient Boosting (XGBoost) to construct the base and stacked ensemble models for lung cancer 

detection using cell-free DNA (cfDNA) fragment omic features.  

RNA 

In their respective studies, Huang et al. [25], Sherafatian et al. [26], A. Rahaman et al. [27], and Fei Yuan et al. 

[28] delved into the intricate landscape of lung cancer using machine learning methodologies, thereby 

contributing significantly to oncological research. Huang et al. scrutinized single-cell RNA sequencing data to 

discern cell markers pertinent to non-small cell lung cancer (NSCLC). Employing meticulous feature selection 

processes, including incremental feature selection (IFS), they pinpointed genes crucial for distinguishing cell 

subtypes within NSCLC samples. Similarly, Sherafatian et al. harnessed machine learning algorithms to unearth 

biomarkers for lung cancer diagnosis and subtyping, leveraging miRNA expression data from The Cancer 

Genome Atlas (TCGA). Their application of decision tree learning algorithms unveiled four miRNAs with 

diagnostic and subtype-discriminatory potential, offering insights for enhanced lung cancer diagnosis and 

classification. 

In a subsequent study, A. Rahaman et al. [27] ventured into the analysis of RNA-Seq data to predict novel 

biomarkers for both small cell lung cancer (SCLC) and NSCLC. By employing machine learning techniques, 

they successfully annotated genes associated with lung cancer pathways, addressing data imbalance issues along 

the way. Their Random Forest model exhibited notable accuracy in classifying genes. Concurrently, Fei Yuan, 

Lin Lu, and Quan Zou delved into the transcriptomic terrain of lung adenocarcinoma (LUAD) and lung 

squamous cell carcinoma (LUSC), leveraging Monte Carlo feature selection and support vector machine 

classifiers. 

Furthermore, in the realm of cancer research, innovative methodologies continue to emerge to enhance 

diagnostic accuracy and therapeutic efficacy. Charkiewicz et al. [5] embarked on a groundbreaking exploration 

into non-invasive biomarkers for non-small cell lung cancer (NSCLC) through serum miRNA profiling. 

Leveraging next-generation sequencing techniques, they identified a panel of 28 upregulated miRNAs in early-

stage NSCLC patients, culminating in the development of a robust gradient-boosting decision tree classifier. 

Meanwhile, Mohammed et al. [29] introduced a novel stacking ensemble deep learning model tailored for 

cancer-type classification using RNA-Seq data. By employing multiple one-dimensional convolutional neural 

networks (1D-CNNs) as base models and fusing their predictions through a meta-model neural network, their 

approach showcased superior accuracy compared to traditional machine learning algorithms, underscoring its 

potential as a robust tool for cancer classification. 
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3. Datasets 

The datasets used in this study provide comprehensive insights into the molecular landscape of lung cancer, 

spanning a variety of populations and experimental methodologies. The first dataset, denoted as GDS2771 and 

referred to as GSE4115, includes gene expression data from 192 smokers, including those who have been pre-

diagnosed (90), have had a lung cancer diagnosis (97), and are at high risk of getting cancer (5). This dataset is 

available through the Gene Expression Omnibus (GEO) database of the National Cancer Institute (NCBI), and 

it offers a useful tool for examining the underlying genetic anomalies linked to the development of lung cancer 

in smokers. Large airway epithelial cells are accessible, providing a less invasive option to standard lung biopsy 

techniques. Regular airway screenings may increase patient assessment and enable earlier detection. When these 

cells are directly exposed to inhaled carcinogens, it makes them vulnerable to early DNA alterations. This makes 

it easier to detect lung cancer early on when treatment efficacy is highest. Furthermore, field cancerization of 

the entire airway epithelium caused by cigarette smoke offers a chance to find more comprehensive biomarkers 

for detection as well as early carcinogenic processes. The feasibility of early detection and extensive screening 

programs, especially for high-risk groups like smokers, is further highlighted by the low cost of analyzing airway 

epithelial cells. 

The second dataset focuses on genomic alterations and transcriptional modulation in Taiwanese female non-

smoking lung cancer patients. It is named "Genome-wide screening of genomic alterations and transcriptional 

modulation in non-smoking female lung cancer in Taiwan" (GSE33356). SNP genotyping by SNP array, 

expression profiling by array, and genome variation profiling by SNP array are all included in this dataset. 

Originating from frozen tissue samples of the main tumors and surrounding normal tissue, it provides important 

new information about the genetic anomalies and transcriptional alterations linked to lung cancer in female non-

smokers. This population is less well-researched than cases related to smoking. The analysis of gene expression 

patterns made possible by the integration of expression profiling by array offers a deeper understanding of the 

molecular mechanisms underlying the development and progression of lung cancer in female non-smokers. 

4. Methodology 

 

Fig 1. The proposed methodology for DNA-based cancer detection. 

1. Data Pre-processing 

The pre-processing of the GSE4115 dataset, which includes gene expression data from bronchial airway 

epithelial cells of smokers, was crucial in guaranteeing the quality and dependability of subsequent analyses 

aimed at DNA-based lung cancer diagnosis in Fig 1. The first steps involved normalizing the data to reduce 

technical biases that are inherent in microarray experiments. This was done to ensure that the gene expression 

values accurately represented the biological differences between the samples. The expression profile 

investigation was performed utilizing the Affymetrix Human Genome U133A Array platform. The probe ID was 

linked to the relevant gene symbol by utilizing the data stored on the platform (GPL96-15653.txt). Given the 

potential for many probes to be associated with the same gene sample, the domino effect was incorporated and 
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computed as a mean value.  The Z-score was used to normalize all gene expression data. This was accomplished 

by computing the standard deviation (SD) and mean for each gene symbol, and then modifying the X value 

correspondingly. This was done to mitigate the influence of disparities in the levels of intrinsic expression 

reported in various genes. The modified equation provides the value X, which denotes the ratio of the average 

to the variability. The gene expression levels in each dataset were normalized using the approaches described 

below. 

z =
(xij − μi)

σi
 

Where x is the expression value of gene i in sample j, μ is the μ(i) and σ(i) respectively representing the mean 

and standard deviation of the expression vector for gene i across all samples. 

2. Feature reduction 

It is preferable to apply Kernel Principal Component Analysis (KPCA) rather than conventional Principal 

Component Analysis (PCA) while enhancing the GSE4115 dataset to make it simpler to comprehend and handle. 

Because KPCA can capture the nonlinear correlations found in high-dimensional genomic data, it is the 

recommended method. While KPCA works in a feature space specified by a kernel function, allowing the 

extraction of nonlinear features, PCA assumes linearity in the data distribution. Understanding intricate 

biological processes, including the patterns of gene expression linked to lung cancer, is made possible by this. 

In genomics research, nonlinearity is particularly important since the relationships between genes and 

phenotypes often exhibit intricate nonlinear patterns. By employing KPCA to efficiently reduce the 

dimensionality of the dataset, researchers can improve the interpretability of subsequent analyses. Important 

information contained in nonlinear relationships is preserved using this technique. Additionally, KPCA aids in 

addressing the difficulties brought on by the "curse of dimensionality," a prevalent issue in genomics datasets 

with a high feature count. It accomplishes this by removing unnecessary low-dimensional representations while 

preserving the data's fundamental structure. Consequently, a comprehensive analysis of the genomic landscape 

supporting the detection of lung cancer utilizing DNA in the GSE4115 dataset is ensured when employing KPCA 

in feature reduction attempts. 

3. Ensemble Learning Methods 

Ensemble learning is a method in machine learning that involves combining the predictions of numerous 

different models to generate a final prediction that is frequently more accurate and resilient than any individual 

model. Ensemble learning is based on the concept of combining the predictions of numerous models to benefit 

from their collective knowledge and reduce the limitations of individual models. Each model may exhibit distinct 

flaws or capture various facets of the data, and via intelligent aggregation of their predictions, these errors can 

be alleviated or nullified, leading to enhanced overall performance. Ensemble learning approaches generally 

entail generating a varied collection of base models, training them on the identical dataset, and subsequently 

merging their predictions by techniques such as averaging, voting, or more advanced methods like stacking. 

Ensemble learning utilizes the variety and combined expertise of numerous models to improve overall 

generalization and predictive accuracy in various machine learning tasks.  

3.1. Averaging Methods (Bagging) 

Bagging: 

Bagging, also known as Bootstrap Aggregating, is an ensemble learning strategy that trains several instances of 

a base model on various subsets of the training data to increase the stability and accuracy of machine learning 

models. To generate several subsets, the dataset is sampled using replacement (bootstrap sampling), and a base 

model is subsequently trained on each subset. The final prediction is then generated by averaging or voting 

together the predictions from these models. 

Random Forest Classifier: 

Using decision trees as its foundation model, the well-known ensemble learning method Random Forest 

Classifier encapsulates the bagging concepts. The final prediction is obtained by combining the outputs of 

separate decision trees, which are trained on randomized subsets of the training data using the Random Forest 

technique. Every tree functions autonomously, reducing overfitting and adding to the collective insights of the 

ensemble. By adding a random component to the feature selection process, Random Forest increases the 
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resilience of the model and further diversifies the individual trees. In mathematical terms, the mode of the 

predictions made by each decision tree in a Random Forest consisting of "n" decision trees determines the final 

output class for a classification issue. 

Mathematically, the classification prediction can be represented in Equation (3). 

X= mode (y1, y2, y3…, yn)  

Where: 

x is the final output class. 

(y1, y2, y3…, yn) are the forecasts from each of the decision trees. 

3.2. Sequential Learning Methods (Boosting):  

Boosting is an ensemble ML technique in which models are trained one after the other, to improve on the 

mistakes made by the preceding model. Boosting is the process of combining weak learners to produce a strong 

learner. 

Assigning distinct weights to every training instance is known as weighted training data in boosting. Every 

instance is given the same weight at first, but as the boosting process goes on, the weights are changed in response 

to how well the earlier models performed. Accurately predicted instances are given lower weights in the 

subsequent iteration, while wrongly predicted instances receive larger weights from the prior model. This makes 

it possible for later models to concentrate more on the unpredictable cases. 

AdaBoost 

For classification tasks, AdaBoost, also known as Adaptive Boosting, is a well-liked ensemble learning 

technique. It trains a sequence of weak learners one after the other, giving misclassified cases more weight with 

each iteration. Based on their performances, these weak learners are joined to generate a strong learner, with 

each student contributing to the final projection. AdaBoost works well at increasing model accuracy by 

concentrating on examples that are difficult to categorize. It can adjust to various datasets, is less prone to 

overfitting, and is flexible. AdaBoost is widely utilized in many different sectors because of its effectiveness and 

versatility, despite its computational complexity. 

3.3. Proposed Ensemble Stacking Method 

In this section, we propose an ensemble stacking approach to enhance the predictive performance of our model 

in Fig 2. Ensemble stacking leverages the strengths of diverse models by combining their predictions to improve 

overall performance. In our scenario, we utilize a heterogeneous stacking approach, employing a mix of different 

types of models as base classifiers. These include decision tree ensemble (RF), boosting ensemble (Ada), KNN 

ensemble (Bagging), and artificial neural network and Logistic Regression as meta classifier. 

 

Fig. 2. The proposed ensemble stacking method for DNA-based cancer detection. 
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The ensemble stacking process involves the following steps: 

1. Initial Predictions: Each base model is trained individually on the training data, and initial predictions 

are made on the validation set or through cross-validation. 

2. Meta-learner Training: A separate meta-learner model is then trained on these initial predictions to learn 

how to effectively combine them for a final prediction. The meta-learner learns the relationships between the 

predictions of the base models and the actual target values, optimizing its parameters to minimize prediction 

error. 

Logistic Regression: 

The LR approach, also known as logistic regression, is typically used for binary classification tasks. Linear 

classification assigns a coefficient to each predictor, which quantifies the impact of that predictor on the outcome 

variable. 

Contribution to the variance refers to the extent to which a variable affects the variability in the variable being 

studied. 

In this particular scenario, the dependent variable, represented by the symbol 'Y,' takes on a value of 1 when the 

response is "Yes" and 0 when the response is "No." The model for Predicted Probabilities is represented by the 

natural logarithm (ln) of the odds ratio, which is mathematically described in Equations 7 to 9 as follows: 

In(
P(Y)

1−P(y)
) = β0 + β1X1 + β2X2 + ⋯ βkXk                                                                 (7) 

P(Y)

1−P(y)
= eβ0+β1X1+β2X2+⋯βkXk                                                                                     (8) 

P(Y) =
eβ0+β1X1+⋯βkXk

1+eβ0+β1X1+⋯βkXk
                                                                                             (9) 

In(
P(Y)

1−P(y)
)= represent the log odds of the outcomes. 

Y= binary result 

X1,X2, … … , Xk = predictor elements 

β0, β1, … . . , βk = coefficients of the predictors 

The regression coefficients are represented as β0, β1, β2, and so on up to βk, with β0 explicitly functioning as 

the intercept. Equation (3.8) in logistic regression establishes a direct relationship between the probability of 'Y' 

and the predictor variables. The primary goal of logistic regression is to estimate the k + 1 unknown parameters 

(β) by maximum likelihood estimation, determining the values that most accurately correspond to the observed 

data. The regression coefficients represent the degree of the association between each independent variable and 

the output. They indicate the anticipated variation in the response variable when the matching predictor is 

present. 

Ensemble stacking presents several advantages for our research endeavor. Firstly, integrating a diverse array of 

models as base learners, enables us to capitalize on the unique strengths of each model, thus enhancing our 

ability to capture multifaceted aspects of the underlying patterns and relationships within the data. Moreover, 

ensemble stacking adeptly addresses the potential weaknesses inherent in individual models by amalgamating 

their predictions. Given that each model may excel in certain domains while faltering in others, ensemble 

stacking offers a means to aggregate these predictions, thereby yielding more resilient and dependable outcomes. 

Importantly, the ensemble stacking approach holds the promise of achieving heightened accuracy compared to 

any singular model. By leveraging a meta-learner to combine predictions from multiple models, the ensemble 

can effectively harness the collective knowledge embedded within the diverse base models, facilitating more 

discerning and precise predictions. 

5. Results and Discussion 

The authors present the performance evaluation of various machine learning models applied to the GSE4115 

dataset. They begin by highlighting the achievements of the best-performing model, a Random Forest classifier, 

which demonstrated an impressive accuracy of 0.810 and an F-1 score of 0.777. These results affirm the efficacy 
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of employing machine learning techniques for dataset analysis. 

The author’s evaluation reveals that the AdaBoost model exhibited comparatively lower performance, with an 

accuracy of 0.789 and an F-1 score of 0.766. Despite this, it is essential to note that all models, including 

AdaBoost, demonstrated the capacity to reliably predict genuine positives while mitigating false pessimistic 

predictions. Notably, the Random Forest classifier achieved the highest recall score of 0.789, underscoring its 

robust capability in accurately identifying true instances within the dataset in Table 1.  

Upon implementing pre-processing and feature reduction techniques on the same dataset, we observed notable 

enhancements in the performance of both Random Forest and AdaBoost models. For Random Forest, the 

accuracy surged to 0.946 and the F-1 score reached 0.9, showcasing substantial improvements compared to the 

base results. Similarly, the AdaBoost model exhibited significant enhancements, with accuracy rising to 0.893 

and the F-1 score increasing to 0.833. These findings underscore the efficacy of pre-processing and feature 

reduction methods in refining the dataset and enhancing model performance. The considerable boost in accuracy 

and F-1 scores highlights the importance of incorporating such techniques as integral components of the machine 

learning pipeline, ultimately leading to more accurate and reliable predictive models. 

In addition to the comparison with Random Forest and AdaBoost models, we propose a Stacking Ensemble 

approach incorporating Random Forest (RF), AdaBoost, Bagging, Support Vector Machine (SVM), and neural 

network models to further enhance the accuracy of lung cancer detection. Our proposed model achieves an 

accuracy of 0.9464, indicating the proportion of correctly predicted instances out of the total instances tested. 

The precision of 1 signifies that all instances predicted as positive are indeed true positives, minimizing false 

positives. With a recall of 0.90, our model successfully identifies 90% of all actual positive instances, ensuring 

fewer false negatives. The F1-Score, at 0.947, shows a balanced measure of model performance. Lastly, the 

ROC AUC Score of 0.9974 reflects the model's ability to distinguish between positive and negative classes, with 

higher values indicating better discrimination capability in Table 2. These metrics collectively demonstrate the 

superior predictive capabilities of our proposed Stacking Ensemble model, offering a promising avenue for more 

accurate and reliable lung cancer diagnosis. 

To validate the effectiveness of our proposed model, we conducted experiments on an RNA dataset as well. The 

performance metrics obtained on this dataset further corroborate the efficacy of our approach, with an accuracy 

of 0.944, precision of 0.952, recall of 0.952, F1-Score of 0.952, and ROC AUC Score of 0.993. These results 

underscore the robustness and generalizability of our proposed Stacking Ensemble model across different 

datasets, reaffirming its potential as a valuable tool for accurate lung cancer detection in clinical settings. 

Table 1: DNA Dataset 

Models Accuracy Precision Recall F1-Score ROC AUC Score 

Random Forest 0.946428571428571 1 0.9 0.9473684211 0.95 

Ad boost 0.8928571429 0.9615384615 0.8333333333 0.8928571429 0.8974358974 

Bagging (KNN) 0.9285714286     

Boosting (Decision Tree Classifier) 0.8571428571 0.8055555556 0.9666666667 0.8787878788 0.8487179487 

Proposed Model 0.9464285714 1 0.9 0.9473684211 0.9974358974 

Table 2: RNA Dataset. 

Models Accuracy Precision Recall F1-Score ROC AUC Score 

Random Forest 0.777777777777777 1 0.578947368421052 0.733333333333333 0.789473684210526 

Adaboost 0.916666666666666 0.875 1 0.933333333333333 0.9 

Bagging (KNN) 0.694444444444444 1 0.476190476190476 0.64516129032258  

Boosting (Decision Tree 

Classifier) 

0.888888888888888 0.869565217391304 0.952380952380952 0.909090909090909 0.876190476190476 

Proposed Model 0.944444444444444 0.952380952380952 0.952380952380952 0.952380952380952 0.993650793650793 

In our study, we explored the efficacy of ensemble learning techniques Bagging, Boosting, and Stacking in 

enhancing predictive accuracy in Fig 3. Among these methods, our proposed Stacking approach achieved the 

highest accuracy of 94.64%, surpassing both Bagging (92.86%) and Boosting (89.29%) in Fig 4. This 

underscores Stacking's superior performance in leveraging diverse models to improve predictive outcomes for 

advanced machine learning applications. 
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Fig. 3. Accuracy comparison: Bagging vs Stacking 

 

Fig. 4. Accuracy, Precision, Recall, F1-score comparison of RF, Ada-boost and Bagging Ensemble. 

6. Conclusion 

In conclusion, our study demonstrates the efficacy of machine learning methodologies in the analysis of the 

GSE4115 and GSE33356 datasets for lung cancer diagnosis. Through rigorous data pre-processing, including 

normalization and feature reduction via Kernel Principal Component Analysis (KPCA), we ensured data quality 

and reduced dimensionality to enhance interpretability. Leveraging ensemble learning methods such as Random 

Forest and AdaBoost, we achieved significant improvements in predictive accuracy compared to individual 

models. Ensemble stacking emerged as a promising approach, effectively combining the strengths of diverse 

models to yield robust and reliable predictions. Our findings underscore the potential of machine learning in 

genomics research, paving the way for the development of accurate diagnostic tools and personalized treatment 

strategies for lung cancer patients. 

7. Future Scope 

This study marks a substantial advancement in lung cancer detection by combining DNA and RNA datasets with 



2336 | P a g 

e 

Non-Invasive Detection of Lung Cancer: Integrating Genomic Data with Ensemble Learning for 

Improved Early Diagnosis   

SEEJPH Volume XXV S1, 2024, ISSN: 2197-5248; Posted: 05-11-2024 

  

 

powerful ML approaches. While it has made progress in ensemble stacking and diagnostic accuracy, there is still 

potential for future investigation. Initially focused on establishing robust detection models, the research is 

motivated by a pressing need for new diagnostic tools. It is critical to identify potential bottlenecks that 

researchers may face, such as data privacy problems, scalability issues, and clinical validation challenges. 

Recognizing these obstacles allows researchers to develop more practical and feasible objectives for developing 

the area of lung cancer detection. By doing so, a path can be paved for new improvements to lung cancer 

diagnosis, ultimately improving the results for patients. 

 

References 

[1] W. H. Organization, “Cancer.” Accessed: Nov. 13, 2024. [Online]. Available: https://www.who.int/health-

topics/cancer#tab=tab_1 

[2] Z.-H. Zhou, Ensemble Methods. Chapman and Hall/CRC, 2012. doi: 10.1201/b12207. 

[3]  et al. B. Alberts, “Molecular Biology of the Cell.” Accessed: Nov. 13, 2024. [Online]. Available: 

https://www.sigmaaldrich.com/IN/en/product/sigma/m5940?utm_source=google&utm_medium=cpc&utm_campaign=

15000381747&utm_content=129438265155&gclid=Cj0KCQiAlsy5BhDeARIsABRc6ZtcidJVOzDbfO_trcrZgdbDFrZ

-f4VqRUXelEvshslp_tJzA4-mPJcaAjtEEALw_wcB 

[4] M. Verma, P. Maruvada, and S. Srivastava, “Epigenetics and cancer,” Critical Reviews in Clinical Laboratory 

Sciences. 2004. doi: 10.1080/10408360490516922. 

[5] Z. Jin, J. Shang, Q. Zhu, C. Ling, W. Xie, and B. Qiang, “RFRSF: Employee Turnover Prediction Based on Random 

Forests and Survival Analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 12343 LNCS, pp. 503–515, 2020, doi: 10.1007/978-3-030-62008-0_35. 

[6] R. Chen and J. Lin, “Identification of feature risk pathways of smoking-induced lung cancer based on SVM,” PLoS 

One, vol. 15, no. 6, p. e0233445, Jun. 2020, doi: 10.1371/journal.pone.0233445. 

[7] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to 

Boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, Aug. 1997, doi: 10.1006/jcss.1997.1504. 

[8] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996, doi: 10.1023/A:1018054314350. 

[9] L. D. Avendaño-Valencia and S. D. Fassois, “Natural vibration response based damage detection for an operating wind 

turbine via Random Coefficient Linear Parameter Varying AR modelling,” J. Phys. Conf. Ser., vol. 628, no. 1, pp. 273–

297, 2015, doi: 10.1088/1742-6596/628/1/012073. 

[10] L. Vanneschi and M. Castelli, Multilayer perceptrons, vol. 1–3. 2018. doi: 10.1016/B978-0-12-809633-8.20339-7. 

[11] R. Bahado-Singh, K. T. Vlachos, B. Aydas, J. Gordevicius, U. Radhakrishna, and S. Vishweswaraiah, “Precision 

Oncology: Artificial Intelligence and DNA Methylation Analysis of Circulating Cell-Free DNA for Lung Cancer 

Detection,” Front. Oncol., vol. 12, May 2022, doi: 10.3389/fonc.2022.790645. 

[12] M. P. S. Brown et al., “Knowledge-based analysis of microarray gene expression data by using support vector 

machines,” Proc. Natl. Acad. Sci., vol. 97, no. 1, pp. 262–267, Jan. 2000, doi: 10.1073/pnas.97.1.262. 

[13] D. Mathios et al., “Detection and characterization of lung cancer using cell-free DNA fragmentomes,” Nat. Commun., 

vol. 12, no. 1, p. 5060, Aug. 2021, doi: 10.1038/s41467-021-24994-w. 

[14] F. Ben Ali, D. Alrifai, M. Braoudaki, S. Adeleke, and I. Mporas, “Comparative Evaluation of Machine Learning 

Algorithms on Lung Cancer Type Classification from DNA Microarray Data,” in 2021 International Conference on 

Biomedical Innovations and Applications (BIA), IEEE, Jun. 2022, pp. 33–36. doi: 10.1109/BIA52594.2022.9831234. 

[15] P. P. Anglim et al., “Identification of a panel of sensitive and specific DNA methylation markers for squamous cell 

lung cancer,” Mol. Cancer, vol. 7, no. 1, p. 62, Dec. 2008, doi: 10.1186/1476-4598-7-62. 

[16] A. A. Ponomaryova et al., “Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment 

follow-up of lung cancer patients,” Lung Cancer, vol. 81, no. 3, pp. 397–403, Sep. 2013, doi: 

10.1016/j.lungcan.2013.05.016. 

[17] J. Cabrera, A. Dionisio, and G. Solano, “Lung cancer classification tool using microarray data and support vector 

machines,” in 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), IEEE, 

Jul. 2015, pp. 1–6. doi: 10.1109/IISA.2015.7387956. 

[18] S. Wu, H. Jiang, H. Shen, and Z. Yang, “Gene Selection in Cancer Classification Using Sparse Logistic Regression 

with L1/2 Regularization,” Appl. Sci., vol. 8, no. 9, p. 1569, Sep. 2018, doi: 10.3390/app8091569. 

[19] A. A. ABRO, E. TAŞCI, and A. UGUR, “A Stacking-based Ensemble Learning Method for Outlier Detection,” Balk. 

J. Electr. Comput. Eng., vol. 8, no. 2, pp. 181–185, Apr. 2020, doi: 10.17694/bajece.679662. 

[20] Q. Wang, Y. Zhou, W. Ding, Z. Zhang, K. Muhammad, and Z. Cao, “Random Forest with Self-Paced Bootstrap 



2337 | P a g 

e 

Non-Invasive Detection of Lung Cancer: Integrating Genomic Data with Ensemble Learning for 

Improved Early Diagnosis   

SEEJPH Volume XXV S1, 2024, ISSN: 2197-5248; Posted: 05-11-2024 

  

 

Learning in Lung Cancer Prognosis,” ACM Trans. Multimed. Comput. Commun. Appl., vol. 16, no. 1s, pp. 1–12, Jan. 

2020, doi: 10.1145/3345314. 

[21] N. Yao et al., “Discovery of potential biomarkers for lung cancer classification based on human proteome microarrays 

using Stochastic Gradient Boosting approach,” J. Cancer Res. Clin. Oncol., vol. 149, no. 10, pp. 6803–6812, Aug. 

2023, doi: 10.1007/s00432-023-04643-z. 

[22] Z. Cai, D. Xu, Q. Zhang, J. Zhang, S.-M. Ngai, and J. Shao, “Classification of lung cancer using ensemble-based 

feature selection and machine learning methods,” Mol. Biosyst., vol. 11, no. 3, pp. 791–800, 2015, doi: 

10.1039/C4MB00659C. 

[23] H. Hijazi, M. Wu, A. Nath, and C. Chan, “Ensemble Classification of Cancer Types and Biomarker Identification,” 

Drug Dev. Res., vol. 73, no. 7, pp. 414–419, Nov. 2012, doi: 10.1002/ddr.21032. 

[24] S. Wang et al., “Multidimensional Cell-Free DNA Fragmentomic Assay for Detection of Early-Stage Lung Cancer,” 

Am. J. Respir. Crit. Care Med., vol. 207, no. 9, pp. 1203–1213, May 2023, doi: 10.1164/rccm.202109-2019OC. 

[25] G.-H. Huang, Y.-H. Zhang, L. Chen, Y. Li, T. Huang, and Y.-D. Cai, “Identifying Lung Cancer Cell Markers with 

Machine Learning Methods and Single-Cell RNA-Seq Data,” Life, vol. 11, no. 9, p. 940, Sep. 2021, doi: 

10.3390/life11090940. 

[26] M. Sherafatian and F. Arjmand, “Decision tree‑based classifiers for lung cancer diagnosis and subtyping using TCGA 

miRNA expression data,” Oncol. Lett., Jun. 2019, doi: 10.3892/ol.2019.10462. 

[27] L. C, P. S, A. H. Kashyap, A. Rahaman, S. Niranjan, and V. Niranjan, “Novel Biomarker Prediction for Lung Cancer 

Using Random Forest Classifiers,” Cancer Inform., vol. 22, 2023, doi: 10.1177/11769351231167992. 

[28] F. Yuan, L. Lu, and Q. Zou, “Analysis of gene expression profiles of lung cancer subtypes with machine learning 

algorithms,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1866, no. 8, p. 165822, Aug. 2020, doi: 

10.1016/j.bbadis.2020.165822. 

[29] M. Mohammed, H. Mwambi, I. B. Mboya, M. K. Elbashir, and B. Omolo, “A stacking ensemble deep learning 

approach to cancer type classification based on TCGA data,” Sci. Rep., vol. 11, no. 1, p. 15626, Aug. 2021, doi: 

10.1038/s41598-021-95128-x. 


