

Epidemiology and risk factors for Rotator cuff tears in Indian population

Dr. Yashavanth Kumar C¹, Dr. Manjunatha R², Dr. Kiran Shankar³, Dr. Vinay Kumar B R⁴

¹Associate Professor, Department of Orthopaedics, MS Ramaiah Medical College

Corresponding author: Manjunatha R, Email: manjur591sims@gmail.com

KEYWORDS

Rotator cuff tear, shoulder disorders, Indian population, risk factors, comorbidities, rotator cuff epidemiology.

ABSTRACT

Introduction: Rotator cuff disorders are a prevalent shoulder problem in clinical settings. The incidence of rotator cuff tears in cadaveric studies ranges from 5% to 40%, with multifactorial etiology. Limited data exists on the epidemiology of rotator cuff tears in the Indian population. This study aims to evaluate risk factors and demographic features associated with symptomatic rotator cuff tears.

Materials and Methods: This prospective observational study was conducted at a tertiary care center in Bangalore, India, involving 105 patients with MRI-confirmed full-thickness rotator cuff tears. A one-time evaluation assessed risk factors, demographic characteristics, and physical examination findings, including range of motion, strength, and impingement. Data were analyzed with descriptive statistics and the Chisquare test to explore associations between age, gender, comorbidities, and rotator cuff tears.

Results: The age distribution showed 5.48% in 31-40 years, 23.81% in 41-50 years, 40.95% in 51-60 years, 22.86% in 61-70 years, and 6.90% in >70 years. The male-to-female ratio was 1.56:1, with a significant gender difference (p = 0.03). Right shoulder involvement was more common (68.10%), with the dominant shoulder affected in 65 patients. Hypertension (29.5%) and type 2 diabetes (24.8%) were the most common comorbidities.

Conclusion: Increasing age is the primary risk factor for rotator cuff tears, with risk rising proportionately with age. Hypertension and diabetes mellitus are common comorbidities associated with rotator cuff disease in the Indian population.

1. Introduction

Rotator cuff disorders are one of the common shoulder problems seen in our clinics. There are various studies in literature estimating the burden of the disease. The incidence of rotator cuff tears in cadavers ranged from 5% to 40%. The etiology of these cuff tears is multifactorial (1-3). With increasing knowledge and new diagnostic tools there is a revolution in effectively managing these cuff tears. To best of our knowledge very little information is available on epidemiology of rotator cuff patients in Indian population (4-10). Purpose of this study was to evaluate various risk factors and demographic features associated with symptomatic rotator cuff tears in our population.

2. Materials and Methods

The study was conducted in a tertiary care Centre in Bangalore, India. It included 105 patients, symptomatic for rotator cuff tears. All these patients confirmed to have full thickness tears on MRI scan. All the subjects underwent one time evaluation for assessment various risk factors, demographic features and symptoms of rotator cuff tears. Physical examination was also conducted on these patients to evaluate range of motion, strength and impingement. Descriptive statistics of rotator cuff tear in different age, comorbidities, gender will be analyzed and summarized in terms of percentage, Chi square test would be used to find the association between age, gender, comorbidities, dominant arm and Rotator cuff tear. Logistic Regression Analysis was done to find the independent risk factors for Rotator cuff tear.

3. Results

A prospective observational study included 105 patients with rotator cuff injury presenting at Ramaiah Hospitals, Bangalore, India. Symptomatic patients with MRI-proven full-thickness tears were included in the analysis.

In the age group 31-40 years we had 5.48%, in the age group 41-50 years we had 23.81%, 51-60 years we had 40.95% and in the age group 61-70 years we had 22.86% and in the age group > 70 years we had 6.90%. In our

²Senior Resident, Department of Orthopaedics, MS Ramaiah Medical College

³Junior Resident, Department of Orthopaedics, MS Ramaiah Medical College

study, the age of the cases ranged between 37 years and 76 years.

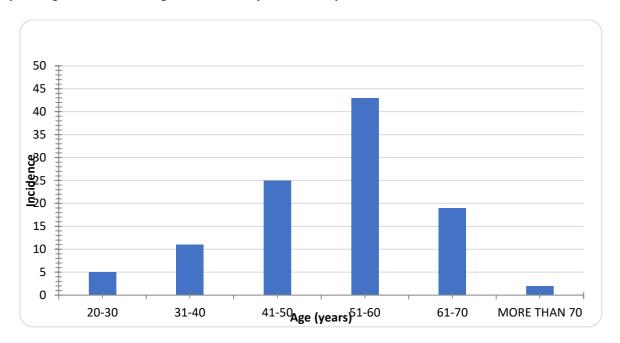


Figure 1: Age and Incidence of Rotator Cuff Tear

In the study, we had 39.05% females and 60.95% males. The male-to-female ratio was 1.56:1. The gender as a risk factor was 1.34. The gender difference was statistically significant with a p-value of 0.30.

Among the all the participants in the study, 31.90% were on the left side whereas 68.10% were affecting the right shoulders. Sixty-five patients had involvement of dominant shoulder whereas forty patients had involvement of the non-dominant shoulder

Hypertension was the most common comorbidity seen in 31 patients. Type 2 diabetes mellitus was the second common comorbidity seen in 28 patients. Twelve patients with symptomatic cuff tear had hypothyroidism.

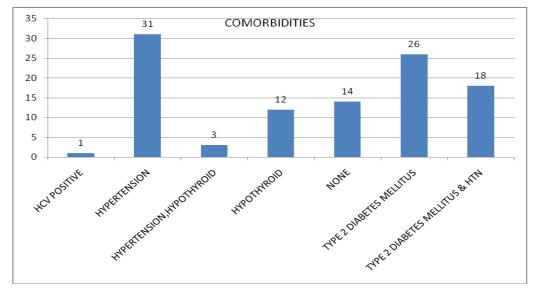


Figure 2: Co-morbidities associated with Rotator Cuff Tear

4. Discussion

Understating the natural history and epidemiology of rotator cuff tears is very important in making appropriate decisions regarding the treatment of rotator cuff tear. Full-thickness rotator cuff tears are present in approximately 25% of individuals in their 60s and 50% of individuals in their 80s. Asymptomatic full-thickness rotator cuff tears are common, increase in incidence with aging, and are present in approximately 50% of patients

over age 65 with a contralateral symptomatic full-thickness tear. The etiology of rotator cuff tears is multifactorial. The common risk factors include age, trauma, smoking, diabetes, hypertension, and hypercholesterolemia.

Age

In our study, we noted that there was a linear association between increasing age and the incidence and severity of the tear (Figure 1). This is in line with the findings of the study by Atsushi Yamamoto et al (12). The current study showed 20.7% of the subjects had full-thickness rotator cuff tears and the rate of occurrence also increased with age. The prevalence of cuff tears increased up to 50% in the eighth decade.

We noted that in both males and females, the age group 51-60 years had the most number of cases 26.67%, thus indicating that the diseases affect the middle-aged population during their productive life years. A study conducted by Abate M et al in 2014 reported that the prevalence of asymptomatic full-thickness tears is increased in the postmenopausal period, and there is an association between tears and metabolic disorders (13).

Gender

In the study, we had 39.05% females and 60.95% males. The male-to-female ratio was 1.56:1. The gender as a risk factor was OR 1.34. The gender difference was statistically significant with a p-value of 0.30. Gumina S et al in 2013 proved that gender was not a significant risk factor for degenerative rotator cuff tear (14)

Side involvement

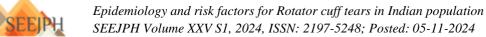
In our study, the right shoulder was the commonly involved side. Among all the participants in the study, 31.90% were on the left side whereas 68.10% were affecting the right shoulders. Sixty-five patients had involvement of the dominant shoulder whereas forty patients had involvement of the non-dominant shoulder. Gumina et al in 2013 proved that hand dominance was a risk factor for degenerative rotator cuff tear.

Comorbidities

In our study, we noted hypertension was the most common co-morbidity associated with full thickness rotator cuff tears (Figure 2). It was associated with 31 patients (29.5%). Hypertension causes peripheral hypovascualrity and hence is associated with degenerative rotator cuff diseases. Stefano Gumina et al in his study have showed e relationship between arterial hypertension and the size of the cuff tear (14). Patients with hypertension have a significantly higher prevalence of large and massive tears. Hypertensive individuals were 2 times more likely to experience a large tear and 4 times more likely to experience a massive tear than normotensive individuals. The odds ratio of hypertension having rotator cuff injury was 2.97 in our study. Harbir Kaur et al noted that hypertension were a significant risk factor for atraumatic rotator cuff tear according to their study (15).

Diabetes mellitus is a well-known risk factor associated with roatator cuff disease which includes tendinitis to full thickness tears and cuff arthropathy. These tears are more common in patients with uncontrolled diabetes. Twenty six patients (24.7%) had diabetes mellitus type 2 associations with these full thickness tears. Rechardt et al in their study showed association between type 1 and 2 diabetes to rotator cuff tears (16). The odds ratio of diabetes mellitus having rotator cuff injury was 4.57 in our study.

Thyroid disorders are the other common metabolic disorders which are associated with rotator cuff diseases. Oliva F et al in their study showed a significant association between rotator cuff tears and thyroid disorders (17). Twelve patients in our study had an association with hypothyroidism.


Studies suggest chemical signals are triggered by conditions including diabetes mellitus, hypertension, smoking, and advanced age. These conditions also cause excessive apoptosis, which obstructs current elimination channels due to poor vascularity, changes in material properties, and changes in matrix composition (18).

5. Conclusion

The etiology of rotator cuff disease is multifactorial. Increasing age is the single most important risk factor for development of rotator cuff tears and risk increases proportionately with age. Diabetes mellitus, hypertension are the common comorbidities which influence the development of these tears in our Indian population.

Author Contribution

Dr. Yashavanth Kumar C: Conceptualization, Methodology, Investigation, Manuscript Writing

- Dr. Manjunatha R: Methodology, Patient follow-up, Statistics, Manuscript Writing
- Dr. Kiran Shankar: Reviewing and Supervision, Manuscript Writing,
- Dr. Vinay Kumar B R: Reviewing and Supervision, Manuscript Writing,
- All authors read and approved the final version of the manuscript

References

- [1] Murrell GA, Walton JR. Diagnosis of rotator cuff tears. Lancet. 2001 Mar 10;357(9258):769-70. doi: 10.1016/S0140-6736(00)04161-1. Erratum in: Lancet 2001 May 5;357(9266):1452. PMID: 11253973.
- [2] Longo U.G, Berton A, Papapietro N, Mafulli N, Denaro V: Epedemiology, genetics and biological factors of rotator cuff tears. Rotator cuff tear. 2012;57:1-9.
- [3] Löhr JF, Uhthoff HK. Epidemiologie und Pathophysiologie der Rotatorenmanschettenrupturen [Epidemiology and pathophysiology of rotator cuff tears]. Orthopade. 2007 Sep;36(9):788-95. German. doi: 10.1007/s00132-007-1146-8. PMID: 17805510.
- [4] Littlewood C, May S, Walters S. Epidemiology of Rotator Cuff Tendinopathy: A Systematic Review. Shoulder & Elbow. 2013;5(4):256-265. doi:10.1111/sae.12028
- [5] Yamaguchi K, Tetro AM, Blam O, Evanoff BA, Teefey SA, Middleton WD. Natural history of asymptomatic rotator cuff tears: a longitudinal analysis of asymptomatic tears detected sonographically. J Shoulder Elbow Surg. 2001 May-Jun;10(3):199-203. doi: 10.1067/mse.2001.113086. PMID: 11408898.
- [6] Titchener AG, White JJ, Hinchliffe SR, Tambe AA, Hubbard RB, Clark DI. Comorbidities in rotator cuff disease: a case-control study. J Shoulder Elbow Surg. 2014 Sep;23(9):1282-8. doi: 10.1016/j.jse.2013.12.019. Epub 2014 Mar 4. PMID: 24618192.
- [7] Liem D, Buschmann VE, Schmidt C, Gosheger G, Vogler T, Schulte TL, Balke M. The prevalence of rotator cuff tears: is the contralateral shoulder at risk? Am J Sports Med. 2014 Apr;42(4):826-30. doi: 10.1177/0363546513519324. Epub 2014 Feb 5. PMID: 24500916.
- [8] Northover JR, Lunn P, Clark DI, Phillipson M. Risk factors for development of rotator cuff disease. International journal of shoulder surgery, 2007; July 1;1(3):1-4.
- [9] Walker-Bone K, Palmer KT, Reading I, Coggon D, Cooper C. Prevalence and impact of musculoskeletal disorders of the upper limb in the general population. Arthritis Rheum. 2004 Aug 15;51(4):642-51. doi: 10.1002/art.20535. PMID: 15334439.
- [10] Moulton SG, Greenspoon JA, Millett PJ, Petri M. Risk Factors, Pathobiomechanics and Physical Examination of Rotator Cuff Tears. Open Orthop J. 2016 Jul 21;10:277-285. doi: 10.2174/1874325001610010277. PMID: 27708731; PMCID: PMC5039902.
- [11] Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med. 2012 Oct;31(4):589-604. doi: 10.1016/j.csm.2012.07.001. Epub 2012 Aug 30. PMID: 23040548.
- [12] Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, Kobayashi T. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg. 2010 Jan;19(1):116-20. doi: 10.1016/j.jse.2009.04.006. PMID: 19540777.
- [13] Abate M, Di Carlo L, Salini V, Schiavone C. Risk factors associated to bilateral rotator cuff tears. Orthop Traumatol Surg Res. 2017 Oct;103(6):841-845. doi: 10.1016/j.otsr.2017.03.027. Epub 2017 May 31. PMID: 28578100.
- [14] Stefano Gumina et al ,The association between arterial hypertension and rotator cuff tear: the influence on rotator cuff tear sizes, Journal of Shoulder and Elbow Surgery, Volume 22, Issue 2,2013, Pages 229-232.
- [15] Kaur H, Aggarwal RK, Dewan A, Sarad R, Jasrotia C. To study the risk factors of degenerative rotator cuff tear. International Journal of Orthopaedics. 2021;7(2): 30-37.
- [16] Rechardt, M., Shiri, R., Karppinen, J. et al. Lifestyle and metabolic factors in relation to shoulder pain and rotator cuff tendinitis: A population-based study. BMC Musculoskelet Disord 11, 165 (2010). https://doi.org/10.1186/1471-2474-11-165
- [17] Oliva F, Osti L, Padulo J, Maffulli N. Epidemiology of the rotator cuff tears: a new incidence related to thyroid disease. Muscles Ligaments Tendons J. 2014 Nov 17;4(3):309-14. PMID: 25489548; PMCID: PMC4241421.
- [18] Sayampanathan AA, Andrew THC. Systematic review on risk factors of rotator cuff tears. Journal of Orthopaedic Surgery. 2017;25(1). doi:10.1177/2309499016684318