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ABSTRACT 
Tuberculosis (TB) remains a significant global health challenge, particularly in developing countries, where 

rapid and accurate diagnosis is crucial for effective treatment. Recent advancements in machine learning and 

image processing have shown promise in enhancing the detection of TB from chest X-ray images. This 

research introduces a novel approach that integrates a hybrid feature selection method with a dual classifier 

framework to improve the accuracy of tuberculosis detection. Feature extraction is conducted using Multi-

Scale Local Binary Patterns (MSLBP), Speeded-Up Robust Features (SURF) with Bag of Words (BoW), 

and Cartoon Texture Features, combining them into a comprehensive feature vector. The Hybrid Binary 

Particle Swarm Optimization (HBPSO) is employed for optimal feature selection, reducing redundancy and 

improving classification efficiency. Classification is performed using a dual framework involving a Long 

Short-Term Memory (LSTM) network and a Spiking Neural Network (SNN), which work in tandem to 

provide robust predictions. Majority voting is utilized to finalize predictions, ensuring high accuracy and 

adaptability across varying TB presentations. Extensive evaluation on publicly available datasets shows that 

this hybrid approach significantly outperforms existing methods, achieving a highest accuracy of 99.73%, 

along with superior precision, recall, and F1 scores. 

 

1. Introduction 

Tuberculosis (TB) remains one of the most pervasive infectious diseases worldwide, significantly affecting 

global health, particularly in underdeveloped regions where medical resources are scarce. Early detection of TB 

is crucial for reducing mortality rates, but existing diagnostic methods face challenges in accuracy, speed, and 

accessibility. Traditional diagnostic techniques, such as Sputum Smear Microscopy and Chest X-ray (CXR) 

imaging, are widely used; however, their effectiveness often depends on the availability of skilled professionals 

and robust medical infrastructure. Among these, CXR stands out as a valuable tool for detecting pulmonary TB 

due to its ability to reveal lung abnormalities associated with the disease. However, accurate interpretation of 

these images poses a challenge, necessitating automated approaches to enhance diagnostic efficiency and 

accuracy. 

In recent years, computer-aided detection (CAD) systems have emerged as a promising solution for automating 

TB diagnosis through CXR analysis. These systems typically involve three key stages: feature extraction, feature 

selection, and classification. Advanced techniques for feature extraction can significantly enhance the detection 

process by capturing critical patterns and abnormalities in X-ray images that are indicative of TB. 

This paper explores a novel TB detection framework using a combined feature set derived from three robust 

feature extraction techniques: Multi-Scale Local Binary Patterns (MSLBP), Speeded Up Robust Features 

(SURF) integrated with Bag of Words (BoW), and Cartoon Texture Features. The combined feature set 

leverages the strengths of each technique: MSLBP captures texture information at multiple scales, SURF with 

BoW efficiently encodes local keypoints into a compact representation, and Cartoon Texture Features 

distinguish between smooth and textured regions, which can help in identifying TB-related lung abnormalities 

such as consolidation, cavitation, or infiltrates. The comprehensive feature set formed through this combination 

allows for a more detailed and nuanced analysis of lung regions in CXR images, capturing both global and local 

characteristics. 

To further refine the diagnostic process, feature selection is performed using Hybrid Binary Particle Swarm 

Optimization (HBPSO). Feature selection is critical for reducing the dimensionality of the feature set, removing 
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redundant or irrelevant features, and improving the computational efficiency of the classification process. 

HBPSO combines the traditional Particle Swarm Optimization (PSO) algorithm with binary search capabilities, 

optimizing the selection of features that most effectively contribute to TB detection. This approach ensures that 

only the most relevant features are retained, enhancing the overall accuracy and performance of the system. 

In the final stage, classification is carried out using a Dual Classifier Framework that integrates two advanced 

neural network models: Long Short-Term Memory (LSTM) and Spiking Neural Networks (SNN). LSTM, 

known for its ability to model temporal dependencies, is adept at capturing sequential patterns in medical data, 

which can be beneficial in analyzing subtle variations in CXR images. SNN, on the other hand, mimics the 

behavior of biological neurons, processing information through spikes and making it highly efficient in handling 

spatiotemporal data. The combination of these two classifiers offers a powerful and flexible framework for TB 

detection. 

The dual classifier system operates using a majority voting mechanism, where both LSTM and SNN 

independently make predictions, and the final classification is determined by the majority vote. In the case of a 

tie, the system defaults to the LSTM prediction, though this strategy can be adjusted based on specific 

requirements. This hybrid approach enhances classification accuracy and robustness, as it combines the strengths 

of both classifiers, allowing the system to adapt to varying conditions and disease presentations. 

By integrating advanced feature extraction, optimized feature selection, and a sophisticated dual classifier 

framework, this study aims to develop a reliable and efficient system for automated TB detection using CXR 

images. The proposed framework has the potential to significantly improve early diagnosis, especially in 

resource-limited settings, contributing to global efforts in combating this deadly disease. 

2. Literature Review 

The COVID-19 pandemic has severely impacted global health and economies. With symptoms resembling other 

respiratory conditions like tuberculosis (TB) and pneumonia, diagnosing COVID-19 has become more complex. 

The authors of [1] proposed CDC Net, a CNN-based model to detect COVID-19 from chest X-ray images, 

aiming for early diagnosis. However, integrating radiology systems and ensuring the quality of X-ray films 

posed significant challenges, reducing the model’s practical effectiveness in real-world settings. 

The authors of [2] focused on using CNN networks to classify lung diseases, including TB and COVID-19, from 

chest X-ray images. Their approach utilized models like AlexNet, Darknet, and ResNet with Adam optimizers 

and 30 epochs for training. Although effective, their study highlighted the need for larger datasets to achieve 

faster and more accurate classifications, suggesting a limitation in its generalizability to more extensive, diverse 

data. 

The authors of [3] explored TB detection using a backpropagation artificial neural network (ANN), achieving 

an accuracy of 81.82%. Despite the results, the backpropagation algorithm struggled to converge quickly, a 

common issue that reduces the overall efficiency and practicality of this technique for real-time TB diagnosis. 

The authors of [4] applied multiple machine learning models such as logistic regression (LR), support vector 

machines (SVM), and random forest (RF) for TB detection, with SVM achieving the highest accuracy of 

91.28%. However, these models showed limitations in scalability, particularly when applied to more extensive, 

varied datasets, making them less adaptable to large-scale medical applications. 

The authors of [5] used Histogram of Oriented Gradients (HOG) for feature extraction and KNN/SVM for 

classification in TB detection. While their model reached 77.95% accuracy, its performance was significantly 

lower for positive HOG detections, with only 65.75% accuracy, indicating inefficiencies in handling certain 

types of TB image data. 

The authors of [6] used SVM and KNN classifiers on chest CT scans to detect TB, with SVM performing better 

overall. However, their study was limited by a small dataset, which restricts the generalizability of the findings 

to larger populations and more complex TB cases. 

The authors of [7] developed a deep learning model using ResNet, Xception, and EfficientNet to detect TB from 

chest X-ray images, using both original and segmented images. Although the study showed promising results, 

it lacked sufficient validation across diverse feature extraction techniques, limiting its robustness in real-world 

scenarios where feature variability is common. 
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The authors of [8] explored a hybrid deep learning approach combining Vision Transformer (ViTs) and 

EfficientNet models for TB recognition on MRI images, achieving success on the Shenzhen and Montgomery 

datasets. However, their method struggled with automatic parameter tuning for diverse datasets, making it 

challenging to apply broadly across various medical imaging data. 

The authors of [9] enhanced TB detection from chest X-ray images using the SMOTE algorithm for class 

balancing, which improved deep learning model performance. Despite this, the method required the application 

of different data augmentation techniques for other lung diseases, limiting its effectiveness in diagnosing 

diseases with varying data distributions. 

The authors of [10] analyzed lung caverns in CT images using a CNN model trained on ImageCLEF 2022 data. 

They employed a three-label prediction algorithm to detect lesions, but their method showed inconsistencies in 

detecting complex lung caverns, reducing its reliability for clinical applications in detecting early TB symptoms. 

The authors of [11] used six deep learning models, including ResNet and DenseNet, on ECG data for COVID-

19 detection. While they achieved high accuracy in detecting COVID-19, the study was limited in its application 

to other cardiovascular and respiratory diseases due to the narrow focus on ECG data. 

The authors of [12] proposed a random forest-based segmentation and classification model for TB detection 

using sputum smear samples. While the model achieved high specificity (96.97%), its sensitivity (75.77%) was 

comparatively lower, pointing to challenges in achieving consistent pixel-level segmentation, which is crucial 

for accurate TB diagnosis. 

The authors of [13] applied a deep neural network-based approach for TB detection, achieving recall and 

precision rates of 83.78% and 67.55%, respectively. However, the reliance on high-quality input images 

presented a significant drawback, as real-world medical images often vary in quality, potentially reducing the 

effectiveness of the model in practical applications. 

The authors of [14] utilized the ImageCLEF dataset to develop a machine learning model for TB detection. Their 

model applied genetic algorithms for feature selection and used SVM for classification. Although the genetic 

algorithm optimized the model’s performance, the large number of features extracted posed a risk of overfitting, 

which limited its generalizability to other datasets. 

Research Gap: While considerable advancements have been made in using machine learning and deep learning 

techniques for TB detection, several gaps remain. Many of the models suffer from limited datasets, difficulties 

in feature extraction, and inefficient parameter tuning. Moreover, there is a lack of methods that effectively 

integrate multiple feature extraction techniques while addressing scalability and adaptability across varied 

datasets. 

To address these gaps, our study introduces a comprehensive TB detection framework that combines advanced 

feature extraction techniques—Multi-Scale Local Binary Patterns (MSLBP), Speeded Up Robust Features 

(SURF) with Bag of Words (BoW), and Cartoon Texture Features—into a unified feature set. Feature selection 

is optimized using Hybrid Binary Particle Swarm Optimization (HBPSO), ensuring the most relevant features 

are selected. Classification is then carried out using a dual classifier framework consisting of Long Short-Term 

Memory (LSTM) networks and Spiking Neural Networks (SNN). This approach leverages both temporal 

dependencies and spike-based processing to enhance classification accuracy, particularly in varying conditions 

of TB manifestation, making the model more robust and adaptable than existing methods. 

3. Proposed Methodology 

The methodology proposed in this paper for Tuberculosis (TB) detection using chest X-ray images involves 

several critical steps, beginning with image acquisition and progressing through pre-processing, feature 

extraction, feature selection, and classification as shown in Figure 1. The approach combines advanced image 

processing techniques and machine learning algorithms to optimize the detection process and enhance accuracy. 

Following subsections describe the proposed work in detail.  

3.1 Image Acquisition 

The first step in the proposed methodology is image acquisition, where the relevant chest X-ray images are 

collected. The dataset utilized in this study is sourced from the publicly available datasets published in the 
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Kaggle Data Science Community. These datasets provide a large number of chest X-ray images that are labeled 

as either TB-positive or TB-negative, ensuring a diverse set of training data that captures a variety of TB 

manifestations in the lung. 

The specific datasets used include the Shenzhen Hospital X-ray Set and the Montgomery County X-ray Set, 

which are well-known and widely used for TB detection research. These datasets contain high-resolution frontal 

chest X-ray images. The images are pre-labeled, with a clear distinction between patients with confirmed TB 

and healthy patients, which serves as the ground truth for subsequent training and evaluation stages. 

Let the dataset be represented as: 

𝐷 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛)}         (1) 

Where 𝑋𝑛i denotes the 𝑖𝑡ℎ chest X-ray image, and 𝑦𝑖 ∈ {0,1} represents the corresponding label, where 0 

indicates TB-negative and 1 indicates TB-positive. 

 

Figure 1: Block diagram of proposed method for tuberculosis diseases recognition 

3.2 Pre-Processing 

Pre-processing is a vital step to ensure that the images are in a standardized format, free from noise, and prepared 

for feature extraction. In this methodology, two primary pre-processing techniques are employed: normalization 

and resizing. 

3.2.1 Normalization 

Normalization is performed to ensure that pixel intensity values across all images fall within a consistent range, 

typically between 0 and 1. This helps eliminate variations in brightness and contrast across different X-ray 

images, allowing the feature extraction process to focus on the relevant patterns within the lung regions. 

Normalization is mathematically expressed as: 

𝑋𝑖
𝑛𝑜𝑟𝑚 =

𝑋𝑖−min(𝑋𝑖)

max(𝑋𝑖)−min(𝑋𝑖)
  (2) 
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• 𝑋𝑖 is the original image matrix containing pixel intensity values, 

• min(𝑋𝑖) and max(𝑋𝑖) are the minimum and maximum pixel intensities in the image, 

• 𝑋𝑖
𝑛𝑜𝑟𝑚 represents the normalized image with pixel values scaled between 0 and 1. 

This normalization process ensures that the images are consistent in terms of intensity, facilitating accurate 

feature extraction and comparison. 

3.2.2 Resizing 

Inconsistent image resolutions are addressed by resizing all chest X-ray images to a fixed dimension of 256×256 

pixels. Resizing ensures that the input data is uniform, reducing computational complexity and standardizing 

the images for subsequent analysis. 

Mathematically, resizing an image 𝑋𝑖 from its original dimensions 𝑊𝑖 × 𝐻𝑖 to the target resolution 𝑊 × 𝐻 can 

be represented as: 

𝑋𝑖
𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑓𝑟𝑒𝑠𝑖𝑧𝑒(𝑋𝑖 , 𝑊, 𝐻)  (3) 

Where 𝑓𝑟𝑒𝑠𝑖𝑧𝑒 is the interpolation function used for resizing, typically applying bilinear or bicubic interpolation 

techniques. This method preserves the structural integrity of the lungs and TB-specific patterns while adjusting 

the image size. 

Upon completing the pre-processing, the dataset is represented as: 

𝐷𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = {(𝑋1
𝑟𝑒𝑠𝑖𝑧𝑒𝑑 , 𝑦1), (𝑋2

𝑟𝑒𝑠𝑖𝑧𝑒𝑑 , 𝑦2), … , (𝑋𝑛
𝑟𝑒𝑠𝑖𝑧𝑒𝑑 , 𝑦𝑛)}  (4) 

Where 𝑋𝑖
𝑟𝑒𝑠𝑖𝑧𝑒𝑑  is the resized and normalized version of each image, ready for feature extraction. 

3.3 Feature Extraction 

The feature extraction process aims to capture meaningful patterns from chest X-ray images that indicate the 

presence of tuberculosis (TB). The proposed methodology applies multiple feature extraction techniques, each 

contributing to a comprehensive representation of image characteristics. The extracted features are further 

combined to form a robust feature set, improving the accuracy and performance of the TB detection model. The 

following subsections describe the techniques used for feature extraction, starting with Multi-Scale Local Binary 

Patterns (MSLBP), SURF with Bag of Words (BoW), and Cartoon Texture Features, concluding with their 

combination into a single feature vector. 

3.3.1 Multi-Scale Local Binary Patterns (MSLBP) Based Feature Extraction 

Multi-Scale Local Binary Patterns (MSLBP) is an extension of the Local Binary Patterns (LBP) technique, 

designed to capture texture information at multiple scales. MSLBP enhances the detection of fine-grained 

textures and patterns in X-ray images, which are essential for identifying early-stage TB symptoms such as 

cavities, infiltrates, and consolidations in lung tissue. 

Local Binary Patterns (LBP): In the standard LBP method, each pixel 𝐼𝑐 in the image is compared to its 

surrounding neighbors. For a pixel located at coordinates (𝑥, 𝑦), LBP is calculated by: 

𝐿𝐵𝑃(𝑥, 𝑦) = ∑ 𝑠(𝐼𝑝 − 𝐼𝑐) ⋅ 2𝑝𝑃−1
𝑝=0    (5) 

Where 𝐼𝑝 represents the intensity of a neighboring pixel, 𝐼𝑐 is the intensity of the center pixel, 𝑠(𝑥) is a step 

function defined as: 

𝑠(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

  (6) 

The result is a binary number representing the local texture, which is converted into a decimal value. 

Multi-Scale Extension: In MSLBP, the same LBP operation is applied over multiple scales to capture texture 

information at different resolutions. Let 𝑅 represent the radius of the neighborhood, and 𝑃 the number of 

neighbors. MSLBP operates over multiple scales by varying 𝑅 and applying the LBP operator at each scale. The 

final MSLBP descriptor is the concatenation of the LBP histograms from each scale: 



1379 | P a g 

e 

Enhanced Tuberculosis Detection in Chest X-Rays Using Optimal Feature Selection with Hybrid 

Binary Particle Swarm Optimization (HBPSO) and a Dual Classifier Framework Combining LSTM 

and Spiking Neural Networks   

SEEJPH Volume XXV S1, 2024; Posted: 05-11-2024 

  

 

𝑀𝑆𝐿𝐵𝑃 = [𝐻𝐿𝐵𝑃
𝑅1 , 𝐻𝐿𝐵𝑃

𝑅2 , … , 𝐻𝐿𝐵𝑃
𝑅𝑛 ]      (7) 

Where 𝐻𝐿𝐵𝑃
𝑅𝑖  is the LBP histogram at scale 𝑅𝑖, and 𝑛 is the number of scales. This multi-scale approach enables 

capturing both fine and coarse texture patterns, improving the representation of TB-related abnormalities. 

3.3.2 SURF (Speeded Up Robust Features) with Bag of Words (BoW) 

SURF is a powerful feature extraction method known for its robustness to scale and rotation changes. It detects 

key points in the image and computes local descriptors that describe the surrounding region of each key point. 

The Bag of Words (BoW) model is applied to transform these descriptors into a global feature vector 

representing the entire image. 

SURF Keypoint Detection and Descriptor Extraction: SURF detects key points based on the Hessian matrix 

approximation, which allows it to locate interest points efficiently. The Hessian matrix 𝐻(𝑥, 𝜎) for a point 𝑥 =
(𝑥, 𝑦) in an image 𝐼 is given by: 

𝐻(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑦𝑥(𝑥, 𝜎) 𝐿𝑦𝑦(𝑥, 𝜎)
]              (8) 

Where 𝐿𝑥𝑥, 𝐿𝑥𝑦, 𝐿𝑦𝑥 and 𝐿𝑦𝑦 are the second-order partial derivatives of the Gaussian-smoothed image at scale 

𝜎. Key points are identified as local extrema in the determinant of the Hessian matrix. Once key points are 

detected, SURF computes descriptors for each point, which describe the intensity distribution in the surrounding 

region. 

Bag of Words (BoW) Model: The BoW model is applied to quantize the SURF descriptors into a set of visual 

words. The process involves clustering the descriptors into 𝑘 clusters using k-means clustering. Each cluster 

center represents a visual word in the vocabulary. For an image, the frequency of each visual word is counted, 

forming a histogram of visual words: 

𝐵𝑜𝑊 = [𝑓1, 𝑓2, … , 𝑓𝑘]           (9) 

Where 𝑓𝑖 is the frequency of the 𝑖𝑡ℎ visual word. This histogram serves as the global feature vector for the image, 

capturing the distribution of key points across different regions of the image. 

3.3.3 Cartoon Texture Features 

Cartoon Texture Features aim to separate an image into its cartoon and texture components. This decomposition 

helps in isolating smooth regions (cartoon component) and fine details (texture component), which can improve 

the detection of TB-specific patterns in the lungs. 

Cartoon-Texture Decomposition: The image 𝐼 is modeled as the sum of two components: 

𝐼 = 𝐼𝑐𝑎𝑟𝑡𝑜𝑜𝑛 + 𝐼𝑡𝑒𝑥𝑡𝑢𝑟𝑒          (10) 

Where 𝐼𝑐𝑎𝑟𝑡𝑜𝑜𝑛 contains the smooth, piecewise-constant regions, and 𝐼𝑡𝑒𝑥𝑡𝑢𝑟𝑒 contains the high-frequency 

details or fine textures. The decomposition is typically performed using a variation of the Rudin-Osher-Fatemi 

(ROF) model, which minimizes an energy functional: 

𝐸(𝐼𝑐𝑎𝑟𝑡𝑜𝑜𝑛, 𝐼𝑡𝑒𝑥𝑡𝑢𝑟𝑒 ) = ∫ |∇𝐼𝑐𝑎𝑟𝑡𝑜𝑜𝑛|
1

Ω
+ 𝜆 ∫ |1 − 𝐼𝑐𝑎𝑟𝑡𝑜𝑜𝑛 − 𝐼𝑡𝑒𝑥𝑡𝑢𝑟𝑒|21

Ω
   (11) 

Where ∇𝐼𝑐𝑎𝑟𝑡𝑜𝑜𝑛 represents the gradient of the cartoon component, and 𝜆 is a regularization parameter 

controlling the trade-off between the cartoon and texture components. Features are then extracted from both 

𝐼𝑐𝑎𝑟𝑡𝑜𝑜𝑛 and 𝐼𝑡𝑒𝑥𝑡𝑢𝑟𝑒, such as texture energy and smoothness characteristics, providing valuable information 

about the lung regions affected by TB. 

3.3.4 Combined Feature Vector 

The final step in the feature extraction process is to combine the features obtained from MSLBP, SURF with 

BoW, and Cartoon Texture features into a single, comprehensive feature vector. Let 𝐹𝑀𝑆𝐿𝐵𝑃, 𝐹𝑆𝑈𝑅𝐹, and 𝐹𝐶𝑎𝑟𝑡𝑜𝑜𝑛 

denote the feature vectors extracted from MSLBP, SURF with BoW, and Cartoon Texture methods, respectively. 

The combined feature vector is represented as: 
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𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = [𝐹𝑀𝑆𝐿𝐵𝑃 , 𝐹𝑆𝑈𝑅𝐹 , 𝐹𝐶𝑎𝑟𝑡𝑜𝑜𝑛]   (12) 

This concatenated feature vector captures a rich set of information from the chest X-ray images, including 

texture, key point distribution, and structural components. The combined feature vector serves as the input to 

the subsequent feature selection and classification stages, enhancing the ability to distinguish between healthy 

and TB-affected lungs. 

The use of multiple feature extraction techniques ensures that the model captures both global and local image 

characteristics, improving the robustness and accuracy of TB detection. This comprehensive feature set forms 

the foundation for feature selection and classification in the later stages of the proposed methodology. 

3.4 Feature Selection using Hybrid Binary Particle Swarm Optimization (HBPSO) 

After extracting the combined feature vector 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 from the feature extraction phase, the feature set may 

still contain redundant or irrelevant features, which can degrade the performance of the classifier. To address 

this, an HBPSO approach is employed for feature selection, which aims to optimize the selection of relevant 

features from the combined feature vector.  

PSO is a population-based optimization algorithm inspired by the social behavior of birds flocking or fish 

schooling. Each potential solution, known as a particle, moves through the search space by adjusting its velocity 

based on its own experience and the experience of its neighbours. The PSO algorithm maintains a population of 

particles where each particle has: 

• A position vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑑], which represents a possible solution to the optimization problem 

(in this case, a feature subset). 

• A velocity vector 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑑], which dictates how the particle moves in the search space. 

• A personal best position 𝑃𝑏𝑒𝑠𝑡, representing the best solution the particle has encountered. 

• A global best position 𝐺𝑏𝑒𝑠𝑡, representing the best solution found by the entire swarm. 

For feature selection, a binary version of PSO is used where each element of the position vector 𝑥𝑖 ∈ {0,1} 

represents whether the corresponding feature is selected (1) or not (0). 

HBPSO Algorithm: In the proposed methodology, HBPSO enhances traditional Binary PSO by incorporating 

mutation strategies from genetic algorithms to avoid premature convergence and improve global search 

capabilities. 

The update rules for velocity and position in the binary search space are formulated as follows: 

Velocity Update: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)]  (13) 

Where: 

• 𝑤 is the inertia weight controlling the balance between exploration and exploitation. 

• 𝑐1 and 𝑐2 are cognitive and social coefficients, respectively. 

• 𝑟1 and 𝑟2 are random values drawn from a uniform distribution. 

Position Update: The position update is based on a probabilistic sigmoid function applied to the velocity: 

𝑆(𝑣𝑖(𝑡)) =
1

1+𝑒−𝑣𝑖(𝑡)   (14) 

The position 𝑥𝑖(𝑡) is updated as follows: 

𝑥𝑖(𝑡 + 1) = {
1 𝑖𝑓 𝑟3 < 𝑆(𝑣𝑖(𝑡 + 1))

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
  (15) 

Where 𝑟3 is a random value drawn from a uniform distribution. 
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The objective of HBPSO is to maximize the classification accuracy while minimizing the number of selected 

features. The fitness function 𝑓 for each particle is formulated as: 

𝑓(𝑋) = 𝛼 ⋅ Accuracy(𝑋) − 𝛽 ⋅
|𝑋|

𝑑
  (16) 

Where: 

• Accuracy(𝑋) is the classification accuracy for the feature subset represented by 𝑋. 

• |𝑋| is the number of selected features. 

• 𝛼 and 𝛽 are weight factors controlling the trade-off between accuracy and the number of selected 

features. 

The selected feature subset 𝐹𝐻𝐵𝑃𝑆𝑂 obtained from HBPSO reduces the dimensionality of the combined feature 

vector 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, which improves computational efficiency and classification performance. 

3.5 Classification 

After feature selection using the HBPSO, the selected feature subset 𝐹𝐻𝐵𝑃𝑆𝑂 is passed to a classification 

framework consisting of two advanced neural network architectures: the Long Short-Term Memory (LSTM) 

classifier and the Spiking Neural Network (SNN) classifier. The classification process aims to leverage the 

strengths of both models to improve prediction accuracy, with a final decision made by a Dual Classifier 

Framework. 

3.5.1 Long Short-Term Memory (LSTM) Classifier 

LSTM networks are a type of recurrent neural network (RNN) designed to handle sequential data. Unlike 

traditional RNNs, LSTMs can maintain long-term dependencies by using gating mechanisms, which allow the 

network to retain or forget information over time. This is particularly useful for the temporal processing of 

feature vectors, capturing sequential dependencies within the extracted feature set 𝐹𝐻𝐵𝑃𝑆𝑂. 

LSTM Unit Structure: An LSTM unit consists of three gates: 

• Forget Gate 𝑓𝑡 

• Input Gate 𝑖𝑡 

• Output Gate 𝑜𝑡 

Each gate controls a different part of the information flow, ensuring relevant information is stored in memory 

and irrelevant information is discarded. 

• Forget Gate: This gate controls how much of the previous cell state 𝐶𝑡−1 is retained. It is computed as: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝐹𝐻𝐵𝑃𝑆𝑂] + 𝑏𝑓)     (17) 

Where 𝑊𝑓 is the weight matrix, ℎ𝑡−1 is the hidden state from the previous time step, and 𝐹𝐻𝐵𝑃𝑆𝑂 is the current 

feature input. 

• Input Gate: This gate determines how much of the new information from the current input should be 

stored in the cell state. It is calculated as: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝐹𝐻𝐵𝑃𝑆𝑂] + 𝑏𝑖)   (18) 

The candidate cell state 𝐶̃𝑡 is computed as: 

𝐶̃𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝐹𝐻𝐵𝑃𝑆𝑂] + 𝑏𝐶)   (19) 

• Cell State Update: The new cell state 𝐶𝑡 is updated as a combination of the previous cell state and the 

new information: 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̃𝑡    (20) 
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• Output Gate: This gate controls the amount of information passed from the cell state to the next hidden 

state ℎ𝑡. The output gate is calculated as: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝐹𝐻𝐵𝑃𝑆𝑂] + 𝑏𝑜)   (21) 

The final hidden state ℎ𝑡 is given by: 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡)   (22) 

Here, ℎ𝑡 represents the network’s memory at time step 𝑡, encoding important sequential features from the input. 

LSTM Classification: After processing the input through multiple LSTM layers, the final hidden state ℎ𝑇 at the 

last time step is passed through a fully connected layer with a softmax activation function for classification. The 

softmax function outputs the probability distribution over the possible classes 𝑦𝐿𝑆𝑇𝑀: 

𝑦𝐿𝑆𝑇𝑀 = softmax(𝑊𝑜𝑢𝑡 ⋅ ℎ𝑇 + 𝑏𝑜𝑢𝑡)   (23) 

Where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are the weight and bias of the output layer. 

3.5.2 Spiking Neural Network (SNN) Classifier 

SNNs are biologically inspired networks that simulate the spiking behaviour of neurons. Unlike traditional 

neural networks, SNNs operate in continuous time and use discrete spikes to transmit information. This makes 

them well-suited for temporal data processing, which complements the temporal nature of the LSTM classifier. 

Neuron Dynamics: The most commonly used neuron model in SNNs is the Leaky Integrate-and-Fire (LIF) 

model. The neuron's membrane potential 𝑉𝑚(𝑡) evolves according to the differential equation: 

𝜏𝑚 =
𝑑𝑉𝑚(𝑡)

𝑑𝑡
= −𝑉𝑚(𝑡) + 𝐼(𝑡)   (24) 

Where: 

• 𝜏𝑚 is the membrane time constant. 

• 𝑉𝑚(𝑡) is the membrane potential at time 𝑡. 

• 𝐼(𝑡) is the input current, which in this case is derived from the feature vector 𝐹𝐻𝐵𝑃𝑆𝑂. 

A neuron emits a spike whenever the membrane potential 𝑉𝑚(𝑡) exceeds a threshold 𝑉𝑡ℎ. After spiking, the 

membrane potential is reset to its resting value 𝑉𝑟𝑒𝑠𝑡. 

Spike Encoding and Decoding: The input feature vector 𝐹𝐻𝐵𝑃𝑆𝑂 is first encoded into spike trains using a spike 

encoding mechanism, such as rate coding or temporal coding: 

• Rate Coding: The firing rate of a neuron corresponds to the magnitude of the feature value. Higher 

values lead to a higher spike rate. 

• Temporal Coding: The timing of individual spikes conveys information, with earlier spikes representing 

higher values. 

The spikes are propagated through multiple layers of spiking neurons, with each layer applying its own 

dynamics. The output layer produces a spike train, which is decoded to obtain the classification result 𝑦𝑆𝑁𝑁. In 

this case, the spike count or timing of the first spike is used to decode the final output. 

3.5.3 Dual Classifier Framework 

The classification task is finalized using a dual classifier framework, which integrates the predictions from both 

the LSTM and SNN classifiers. This framework capitalizes on the complementary strengths of the two models, 

where the LSTM is better at capturing long-term dependencies, and the SNN excels in processing temporal spike 

patterns. 

Majority Voting Scheme: To combine the predictions from both classifiers, a majority voting scheme is 

employed: 

• Let 𝑦𝐿𝑆𝑇𝑀 and 𝑦𝑆𝑁𝑁 represent the class predictions from the LSTM and SNN classifiers, respectively. 
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• The final class prediction 𝑦𝑓𝑖𝑛𝑎𝑙 is determined as follows: 

𝑦𝑓𝑖𝑛𝑎𝑙 = {
𝑦𝐿𝑆𝑇𝑀 ,                            𝑖𝑓 𝑦𝐿𝑆𝑇𝑀 = 𝑦𝑆𝑁𝑁

arg max(𝑃𝐿𝑆𝑇𝑀, 𝑃𝑆𝑁𝑁) 𝑖𝑓 𝑦𝐿𝑆𝑇𝑀 ≠ 𝑦𝑆𝑁𝑁
   (25) 

Where 𝑃𝐿𝑆𝑇𝑀 and 𝑃𝑆𝑁𝑁 are the probabilities or confidence scores for the predicted classes from each model. 

Final Decision: The final decision process prioritizes agreement between the two classifiers. In case of a 

disagreement, the classifier with the higher confidence score is given precedence. This combination of LSTM 

and SNN ensures robust classification performance, with the LSTM model handling sequential dependencies 

effectively and the SNN model leveraging the temporal characteristics of the data. 

By employing this dual-classifier framework, the overall classification system benefits from the complementary 

strengths of each model, improving accuracy, reducing the error rate, and providing a more robust solution to 

the classification task. 

 

Figure 2: Dual Classification Framework Integrating LSTM and SNN Outputs through an Ensemble Approach 

4. Simulation and Results 

4.1 Dataset 

The dataset utilized in this research consists of chest radiograph images sourced from two publicly available 

datasets hosted on the KAGGLE platform [15-16]. These datasets, when combined, provide a total of 7,662 X-

ray images, each representing anonymized patients. The primary motivation for merging these datasets is to 

increase the variability in the training data, thereby enhancing the generalization capabilities of the proposed 

model across diverse image sources during both validation and testing. 

 

Figure 3: Images of a healthy patient and a patient with tuberculosis [16] 

To ensure data quality, a thorough inspection of each image was conducted. Images exhibiting noise, such as 

illegible scans, presence of artifacts (e.g., superimposed text, boxes), incorrect positioning, or those that did not 

properly fit into the predefined categories, were discarded. After this cleaning process, the dataset was reduced 

to 5,748 valid images. These comprise 2,905 images of healthy individuals and 2,843 images of tuberculosis 

patients. 

For the purpose of training and evaluation, the dataset was split into two subsets: 80% of the data was allocated 

to the training set, while the remaining 20% was reserved for testing. Furthermore, the training set was 

partitioned again, with 20% of it used for validation during the cross-validation phase of model training. This 

split ensures that the model is properly evaluated on unseen data, improving its robustness and reducing 
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overfitting. Figure 3 shows sample images from the dataset. 

4.2 Results 

The results, as illustrated in Figures 4 to 8, demonstrate that integrating hybrid features with feature selection 

significantly improves tuberculosis detection in chest X-rays. Notably, the dual classifier framework (Figure 8) 

combining LSTM and SNN achieves the highest accuracy, surpassing individual classifiers.  

Additionally, both LSTM and SNN classifiers (Figures 4-7) benefit from feature selection, resulting in reduced 

misclassification and more robust detection performance. These findings underscore the effectiveness of 

combining advanced feature extraction with optimized classifiers for accurate TB detection. 

 

Figure 4: Confusion matrix plot for Tuberculosis Detection in Chest X-Rays using Hybrid Features and SNN 

classifier 

 

Figure 5: Confusion matrix plot for Tuberculosis Detection in Chest X-Rays using Hybrid Features and LSTM 

classifier 
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Figure 6: Confusion matrix plot for Tuberculosis Detection in Chest X-Rays using Hybrid Features, Feature 

Selection and SNN classifier 

 

Figure 7: Confusion matrix plot for Tuberculosis Detection in Chest X-Rays using Hybrid Features, Feature 

Selection and LSTM classifier 

 

Figure 8: Confusion matrix plot for Tuberculosis Detection in Chest X-Rays using Hybrid Features, Feature 

Selection and dual classifier 
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Table 1: Performance Comparison of Tuberculosis Detection Methods Using Hybrid Features and 

Different Classifiers 

Parameters Hybrid 

Features 

+ SNN 

Hybrid 

Features + 

LSTM 

Hybrid Features + 

Feature Selection + 

SNN 

Hybrid Features + 

Feature Selection + 

LSTM  

Hybrid Features + 

Feature Selection + Dual 

Classifier 

Accuracy 0.9772 0.9828 0.9901 0.9947 0.9973 

Error Rate 0.0228 0.0172 0.0099 0.0053 0.0027 

Sensitivity 0.9779 0.9829 0.9859 0.9925 0.9972 

Specificity 0.9924 0.9943 0.9938 0.9967 0.9975 

Precision 0.9777 0.9829 0.9929 0.9962 0.9972 

False Positive Rate 0.0076 0.0057 0.0062 0.0033 0.0025 

F1-Score 0.9777 0.9829 0.9894 0.9943 0.9972 

Matthews Correlation 

Coefficient (MCC) 

0.9701 0.9772 0.9801 0.9893 0.9947 

Kappa Statistics 0.9393 0.9542 0.9801 0.9893 0.9947 

Table 1 compares the performance of various tuberculosis (TB) detection methods using hybrid features and 

different classifiers. It shows improvements across different evaluation metrics, with the dual classifier 

achieving the highest accuracy of 99.73%. 

Table 2 compares previous TB detection research with the proposed hybrid feature-based methods. The 

proposed methods show superior performance across different evaluation metrics, with the dual classifier 

outperforming the rest. 

Table 2: Comparative Results with Previous Research Works and Proposed Hybrid Methods 

Citation Method Used Accuracy Precision Sensitivity 

(Recall) 

Specificity F1-

Score 

Authors of [3] Backpropagation ANN for TB Detection 81.82% -- -- -- -- 

Authors of [4] SVM for TB Detection 91.28% -- -- -- -- 

Authors of [5] HOG + KNN/SVM for TB Detection 77.95% -- -- -- -- 

Positive HOG Detections 65.75% -- -- -- -- 

Authors of [12] Random Forest-based Segmentation & Classification 
for TB 

-- -- 75.77% 96.97% -- 

Authors of [13] Deep Neural Network for TB Detection -- 67.55% 83.78% -- -- 

Proposed 

Method 

Hybrid Features + Feature Selection + SNN 99.01% 99.29% 98.59% 99.38% 98.94% 

Proposed 

Method 

Hybrid Features + Feature Selection + LSTM 99.47% 99.62% 99.25% 99.67% 99.43% 

Proposed 

Method 

Hybrid Features + Feature Selection + Dual 

Classifier 

99.73% 99.72% 99.72% 99.75% 99.72% 

5. Conclusion 

This research presents a robust and effective methodology for the detection of tuberculosis in chest X-ray 

images, leveraging a hybrid feature extraction and selection process alongside a dual classifier framework. By 

integrating features such as MSLBP, SURF with BoW, and Cartoon Texture Features, and optimizing them 

through HBPSO, this approach ensures both comprehensive and refined feature representation. The combination 

of LSTM and SNN in the dual classifier framework enhances classification performance by utilizing both 

temporal sequence learning and spike-based processing, leading to more accurate and flexible detection. 

Experimental results demonstrate that the proposed method achieves a highest accuracy of 99.73% compared to 

traditional models. The presented framework offers a valuable contribution to the computer-aided diagnosis of 

TB and could potentially be extended to the detection of other lung diseases in future work. 
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