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ABSTRACT 

Diabetes is a chronic disease originating from preeminent blood glucose levels where there is an impairment in 

the ability of the human body to produce or effectively use insulin, therefore resulting in possible complications 

to various organ systems. Hypoglycemia can be defined as a critical condition in diabetes that is characterized 

by very low levels of blood sugar and can emanate from any imbalance between insulin, glucose, and external 

factors such as medication or physical activity. The prediction of hypoglycemia is a very important task in 

diabetes management, which encompasses sophisticated technologies and deep-learning systems, such as 

RNNs, in performing analyses on patient-specific data. These must provide timely warnings to avoid hazardous 

blood sugar dips. This paper takes a close look at the performance of RNN in the case of accurate hypoglycemia 

prediction among patients with Type-1 Diabetes, considering a dataset from Shanghai T1DM. 

In this work, three different RNN architectures are considered for performance evaluation: Long-Short-Term 

Memory (LSTM), Gated Recurrent Unit (GRU), and Simple RNN. The main goal was to compare their 

predictive performances in forecasting hypoglycemic events, which is an issue of utmost relevance when it 

comes to proactive diabetes management. The results show generally variable performances by the RNN 

models. Overall, GRU performed with striking accuracy in hypoglycemia predictions, while LSTM had high 

specificity. These findings underline that various metrics should be considered for the comprehensive 

evaluation of predictive models in the management of diabetes. It will give an idea about various RNN 

algorithms, strengths, and weaknesses to develop more effective and personalized strategies related to 

hypoglycemia prediction in Type-1 Diabetes. 

 

1. Introduction 

In Type-1 Diabetes is and autoimmune disorder in which, the immune system, attacks the beta cells 

and kills them by mistake. Insulin, an important hormone in blood sugar regulation, becomes 

insufficient. Consequently, glucose cannot get inside the body's cells, raising blood sugar levels. But 

while certain specific factors that provoke this autoimmune response are unclear, genetic and 

environmental factors are known to bear some causative relationship to this disorder. Unlike type 2 

diabetes, which usually arises later in life, type 1 diabetes normally arises very early in childhood or 

even adolescence. Diabetes, if not treated, especially type 1, may lead to serious and life-threatening 

circumstances. 

Untreated or poorly managed diabetes may result in Diabetic Keto Acidosis, which is very dangerous 

because of the accumulation of ketones in the blood, which may result in dehydration, vomiting, and 

may result in diabetic coma. On the other hand, hypoglycemia is the condition that results in an 

extremely low amount of blood sugar. For instance, this will happen if a diabetic person has very high 

insulin levels, skips meals, or is highly engaged in strenuous physical exercise without proper 

adjustments in the insulin dose. Severe hypoglycemia is dangerous and can go further to implicate 

itself through confusion, seizures, or unconsciousness. To avoid such complications, people with 

diabetes need to maintain their blood glucose by daily monitoring of blood glucose, medication 

management, and lifestyle changes. New innovations like Continuous Glucose Monitoring (CGM) 

systems and insulin pumps have reformed diabetes care by contributing real-time insights of blood 

glucose values and allowing for more accurate dosing of insulin. 

By being able to foresee hypoglycemia with the use of CGM data, one can implement timely 

interventions of adjusting the dosage of insulin or taking glucose-rich food to avoid severe 

complications. All these enable a person with diabetes to understand and manage their condition far 
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better, which considerably reduces the risks of long-term complications, improving the quality of life. 

Therefore, if they can predict the onset of hypoglycemia by using newer digital diabetic management 

devices data, this will be crucial to diabetes management. This predictive capability can enable users 

to take corrective action concerning insulin intake or other precautionary measures well in time, greatly 

reducing the risk of serious hypoglycemia. The present paper carries out a detailed performance 

analysis of RNN algorithms with a view to their efficiency regarding correct prediction of 

hypoglycemic events for Type-1 diabetic patients. 

Recognizing that there is a crucial need for timely intervention strategies that can prevent 

hypoglycemic episodes, our study investigates in great depth several RNN model capabilities running 

different prediction horizons of 60, 75, and 90 minutes. This work, by investigating predictive accuracy 

and reliability, aspires to add value to the ongoing pursuit of refining predictive tools for enhanced 

diabetes management. For the purpose of this study, we use a subset of the Shanhai T1DM dataset.   

Related Works 

Approaches toward hypoglycemia prediction in Type 1 diabetes try to bring improvements over patient 

management by creating models that could successfully anticipate low events of blood glucose. These 

initiatives seek proactive interventions, such as adjusting insulin dosages, with the intent of mitigating 

hypoglycemia risks. Even if there is remarkable development in the area of diabetic health care, 

challenges still exist due to the complex behavioural pattern of glucose, which demand personalized 

approaches. Other challenges include the continuous real-time monitoring that will contribute to 

maintaining data quality and availability, and also to engage users and improve adherence to the 

predictions from the models. The behaviours of patients are important in understanding how to use 

these predictive tools effectively. 

In 2020, Dae-Yeon Kim et al. proposed a deep learning model, especially RNNs, for personalized 

glucose prediction of inpatients affected by type 2 diabetes. As mentioned, this has been done in an 

attempt to put forward something useful that would assist medical staff in monitoring blood glucose 

and maintaining appropriate doses of insulin. [8]. The study only focuses on the performance of simple 

RNNs, gated recurrent units(GRUs), and long short-term memory (LSTM) networks with GRU being 

the best among them all. To achieve this, data from continuous glucose monitoring devices for a week 

are utilized by the proposed model, which scored an average root mean squared error (RMSE) of 21.5 

and mean absolute percentage error (MAPE) of 11.1% during twenty hospitalized type 2 diabetic 

patients care. This research does valuable service in Type-2 diabetes mellitus by addressing the gap 

between studies about Type-1 patients’ work and providing an equally good performance as before. 

[9]. 

Alfian et al. presented the machine-learning approach for predicting blood glucose levels in Type 1 

diabetes patient using their innovative model in the same year, 2020. This artificial neural network 

(ANN) includes time-domain features that are used to predict future concentration of glucose at 

intervals of 15, 30, 45 and 60 minutes by probing into each of the preceding thirty minutes of blood 

sugar readings. It enhances characteristics from previous 30-minute glucose data with temporal domain 

properties within its input data that increases throughputs. Unlike many other data-driven models such 

as Support Vector Regression (SVR), K-Nearest Neighbour (KNN), Random Forest (RF), Adaptive 

Boosting (AdaBoost), Decision Tree (DT) and eXtreme Gradient Boosting(xgboost), this ANN-based 

prediction model performs better when tested on type-1 diabetics, consisting of twelve patients. 

Therefore, this proposed model achieved a high performance level with average root mean square error 

values of RMSE=2.82 mg/dL for PH=5min., RMSE=6.31 mg/dL for PH=10 min., RMSE=10.65 

mg/dL for PH=15 min., and RMSE=15.33 mg/dL for PH=20 min. The integration of time-domain 

attributes enhances predictive capability, enabling early alerts for preventive measures before critical 

hypoglycemic or hyperglycaemic events occur [10]. 

Ma, Yu, Yang, and Zhao introduced a hypoglycemia early alarm method for type 1 diabetes patients 

in 2022, which is based on multi-dimensional sequential pattern mining. Since T1D hypoglycemia, 
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particularly nighttime hypoglycemia, is a priority due to its criticality, the study is centred on 

developing an efficacious early alarm system. A multi-dimensional database is generated to organize 

blood glucose, meal, and insulin time series, and real-time retrieval of hypoglycemia sequence patterns 

is conducted utilizing the UniSeq algorithm. Evaluating the OhioT1DM dataset, results show a 

sensitivity of 75.76%, precision of 75%, F1 score of 75.38%, and an early alarm time of 25.17 minutes. 

The study highlights the potential of multi-dimensional sequential pattern mining for comprehensive 

diagnosis support in personalized treatment, offering valuable insights and early warnings for effective 

blood glucose management in T1D patients [11]. 

In 2022, Stella Tsichlaki, Lefteris Koumakis, and Manolis Tsiknakis undertook a systematic review 

regarding cutting-edge approaches for monitoring and preventing hypoglycemic events in type one 

diabetic patients—this review sought to discuss various detection methods with emphasis on 

technological advances. They applied PRISMA recommendations in their search through PubMed, 

Google Scholar, IEEE Xplore and ACM Digital Library. In all, fifteen papers were found that had 

designed predictive models for T1D related hypoglycemia with each paper opting for different 

approaches like statistical (10%), machine learning (52%) and deep learning techniques (38%). The 

most widely used algorithms include Kalman filtering, support vector machines, k-nearest neighbors 

and random forests. Consequently; it is evident that the predictive models performed quite well with 

an accuracy range of between 70% to 99% as an indication of these technologies potential applications 

in predicting hypoglycemia in individuals with T1D. [12]. 

In their 2022 work, Zhu et al. introduced a new way of promoting self-management in type 1 diabetes 

(T1D) using wearables and deep learning algorithms. They used the CGM-in-a-wristband sensor fusion 

to develop the ARISES platform with a DL-based algorithm. This system exhibited an excellent 

average root mean square error (RMSE) of 35.28 ± 5.77 mg/dL for a sixty-minute future glucose level 

prediction horizon. It is worth noting that for hypoglycemia detection, the correlation coefficients were 

Matthews’s [sic] 0.56 ± 0.07, while hyperglycemia was at 0.70 ± 0.05 respectively by the algorithm. 

The inclusion of wristband data significantly reduced the RMSE by 2.25 mg/dL (p < 0.01). An 

application on a smartphone running ARISES can provide real-time decision support, which creates a 

promising direction toward mitigating serious complications and improving T1D self-care [13]. 

In 2022, Peng, Li, Wang, and Yan evaluated blood glucose prediction and raised warning of 

hypoglycemia using two deep learning techniques LSTM and GRU on continuous glucose curves from 

100 Diabetes Mellitus patients over 72 hours. The model demonstrated superior predictive capabilities 

with mean RMSE values of 0.259, 0.272, 0.275, and 0.278 (mmol/l) for prediction horizons of 15min, 

30min, 45min, and 60min. These values were significantly lesser than those obtained with the LSTM 

and GRU models (p < 0.001). The model based on LSTM and GRU, constantly exhibited sensitivity 

and false-negative rates over time, with a sustained false-positive rate. The study highlights the 

effectiveness of the model by outstanding precision in blood glucose prediction and hypoglycemia 

warning, emphasizing its potential for enhancing diabetes management [14]. 

Thomsen et al. addressed hypoglycemia in T2D patients undergoing insulin treatment in 2023 using a 

deep-transfer learning approach. They employed CGM data of T1D and T2D patients, as well as 

labelled one-hour samples into positive or negative classes based on a hypoglycemic criterion. They 

first pre-trained CNN using T1D data and then fine-tuned the network further by training with T2D 

data optimized for AUC. It showed outstanding results when externally validated on a separate dataset 

of T2D, with an AUC of 0.941; the PPV was 40.49% at 95% specificity and 69.16% sensitivity was 

obtained for this deep transfer learning model. Therefore, this model may prove to be very promising 

for the accurate prediction of hypoglycemia, thereby enhancing the quality of life and mortality in 

insulin-treated T2D patients [15]. 

Our paper is focused on the performance analysis of the RNN algorithm family for accurate 

hypoglycemia prediction in Type-1 Diabetes. In this regard, three different RNN architectures are 

evaluated: LSTM, GRU, and Simple RNN. Contrary to related works, the key objective here is to 
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investigate the predictive performance of these models. Most importantly, the study clearly reveals 

some nuanced performances across RNN architectures: the high precision by GRU and high specificity 

by LSTM.  

2. Methodology  

This study undertakes a comprehensive investigation on the accuracy of hypoglycemia prediction in 

Type-1 diabetes, employing Recurrent Neural Network (RNN) algorithms. This focuses on three 

different RNN architectures – Simple RNN, Gated Recurrent Unit (GRU), and Long Short-Term 

Memory (LSTM) networks. In addition to this, to correspond to variability, the Monte Carlo simulation 

technique is also employed. So, the variations in the initial model conditions are trained, and the mean 

predictions from the simulations are finally considered. 

A. Dataset 

For the purpose of our study, we utilized a subset of the ShanghaiT1DM dataset originated from 

Shanghai, China.  The dataset contains CGM data from 12 individuals diagnosed with Type-1 Diabetes 

Mellitus (T1DM) collected through 3 to 14 days. The data comprises of CGM values, blood glucose 

levels, insulin doses, carbohydrate intake, as well as age and gender. [1].  

In order to suit the method of our study, the dataset was rearranged. Each instance in the newly arranged 

dataset now includes details on insulin dosage, age, CGM measurements, and carbohydrate intake at the 

time of the recorded event, along with subsequent CGM readings at 30, 45, and 60 minutes. For each 

target column, namely PH60, PH75, and PH90, the occurrence of hypoglycemia is identified by 

assessing whether the blood glucose level falls below 70. Events of hypoglycemia are marked as 1, 

otherwise 0. 

To ensure privacy of the patients, the original Patient IDs are replaced with numbers ranging from 1001 

to 1012. Furthermore, to ensure the effectiveness of our model, the dataset was partitioned into an 80% 

(8000 rows) training set for model development and a 20% (2000) testing and validation set to assess 

the model's generalization performance. Table 1 provides a glimpse into a sample of the dataset. 

Table1: Sample dataset 
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B. Data Preprocessing 

The dataset, includes vital features like Age, CGM readings, dose of insulin intake, and 

carbohydrate intake (Carbs). A two-step data preprocessing approach is employed to make the dataset 

fit for the training. First, the zero-values for the 'Carbs' column are replaced with the average 

carbohydrate value specific to each corresponding patient. 

Also, the dataset was observed to have no values in the target columns at some points. Such rows 

are also removed before using the data for training. The preprocessing step results in a cleaner and 

standardised dataset, thereby laying a strong foundation for the training and prediction. 

C. Simple Recurrent Neural Network (RNN) 

An RNN, or Recurrent Neural Network, is category of artificial neural network which can 

efficiently deal with sequential or time-dependent data. RNN comprise of input layers, hidden layers, 

and an output layer. RNNs are famous for their unique architecture, where the output of each layer 

serves as input for the succeeding layer. Unlike other traditional models considering self-determining 

inputs, RNNs integrate output from previous steps, which gives it the ability to capture temporal 

dependencies within sequences. The hidden states within RNNs are for memorizing the critical details 

about the sequence.  In essence, an RNN can be envisioned as a succession of neural networks, trainable 

sequentially through backpropagation, and it excels at handling data with inherent temporal 

relationships [17]. The basic structure of a simple RNN is provided in Figure 1.  

 

Fig 1: Structure of Simple RNN 

In RNN an input layer may be followed by series of hidden layers, which are responsible for 

weight assignment, and for learning the complex characteristics of the data. Each layer has a bias based 

on the result from its preceding layer. This typical structure of execution promotes the network's ability 

to learn and adapt to the intricacies of the sequential data it processes [2].  

D. Gated Recurrent Unit (GRU) 

The Gated Recurrent Unit is another important neural network among the recurrent neural 

network’s family. It is brilliant in way that allows only the necessary information for each time step. 

GRU contains two additional gates compared to the other models: the reset gate and the update gate. 

The reset gate controls how much of the information from the previous stage must be forgotten, adding 

an element of alteration to the number. The update gate is responsible for the incorporation of new 

input into the hidden state, regulating the extent to which the network should embrace fresh 

information. This interaction of gates enables GRU to calculate its output based on the updated hidden 

state, offering a nuanced approach to capturing temporal dependencies in sequential data [4].  

The Gated Recurrent Unit (GRU) has only three gates The knowledge preserved in the Internal 

Cell State of an LSTM unit becomes part of the hidden state of the GRU. The distinct gates within a 

GRU, including the Update Gate (z) and the Reset Gate (r), play analogous roles to the Output Gate 

and an amalgamation of the Input Gate and Forget Gate in an LSTM, respectively. Furthermore, the 
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often-ignored current Memory Gate adds non-linearity and zero-mean properties to the input, 

strategically diminishing the role of previously received information on the present data sent to the 

future. Such a complex structure gives GRU an outstanding level of freedom and effectiveness at 

capturing complex patterns in sequential data. The basic structure of a GRU cell is depicted in Figure 

2. 

 

Figure 2: Structure of GRU 

E. Long-Short-Term Memory (LSTM) 

Long-short-term memory (LSTM) is a type of RNN used to process sequential or time-series data. 

They are able to discard or retain information selectively by using internal memory cells and necessary 

gates to control flow of information. Thus, it eliminates the vanishing gradient problem in traditional 

RNNs. Figure 3 illustrates the structure of a single LSTM cell. 

An LSTM cell can be viewed as a series of four neural networks with memory cells connected. 

An LSTM unit consists of the following components: a cell, an input, an output gate, and a forget gate. 

The input gate is responsible for looking through the inputs and deciding on a value that should be 

written in or thrown away [18]. By incorporating the sigmoid function along with the inputs from the 

previous state and the current input, the forget gate produces a value ranging from 0 to 1. The value 

will decide if the information in a specific cell state may be preserved or excluded. This concept 

demonstrates the intricate decision-making mechanisms integrated into the LSTM architecture [5]. 

 

Figure 3: Structure of LSTM Cell 

F. Monte Carlo Simulation 

Monte Carlo Simulation is a computational method used for modelling and analysing complex 

systems through random sampling. This technique generates numerous random inputs within 

predefined ranges. Subsequently, the behaviour of the system is simulated to derive a range of probable 

outcomes. This process is repeated thousands or even millions of times, to reach a decision with a 

probabilistic perspective on various scenarios, particularly beneficial when navigating uncertainties. 

[6]. The fundamental idea behind the Monte Carlo simulation is to estimate the outcome by calculating 
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the ratio of successful events to the total number of trials, adjusted by the number of possible outcomes 

in each trial. As the number of trials increases, the estimated outcome converges into a more precise 

depiction of the underlying system's behaviour.  

In the context of hypoglycemia prediction, we can use it to simulate possible future blood glucose 

levels based on various uncertain factors. 

Let's denote: 

• BGt -> blood glucose level at time t, 

• It, -> the insulin dosage at time t, 

• Ct, -> the carbohydrate intake at time t, 

• Ut -> other relevant factors affecting blood glucose level 

The blood glucose level at the next time step (t+1) can be simulated using a Monte Carlo simulation 

step might be: 

                  BGt+1=f(BGt,It,Ct,Ut)+ϵt                [19] 

where f is the function representing the relationship between the inputs and the blood glucose level, 

and ϵt is a random error term introduced to account for uncertainty or variability. 

In the case of blood glucose prediction, Monte Carlo simulation sample random values for the 

input features such as CGM, insulin, Carbs etc from their corresponding probability distribution. After 

conducting many iterations, the results are aggregated by calculating the mean prediction of all the 

simulations.  

This process allows for the consideration of uncertainties and variability in the factors affecting 

blood glucose, providing a probabilistic prediction rather than a deterministic one. The result is a range 

of potential outcomes, helping in understanding the likelihood of hypoglycemia under different 

scenarios and informing decision-making in managing diabetes. 

G. Model Construction 

This study concentrates on analysing the performance of Recurrent Neural Network (RNN) 

architectures, specifically Simple RNN, GRU, and LSTM networks in hypoglycemia prediction in 

Type-1 diabetic patients. As hypoglycemia, is considered as a dynamic and time-sensitive phenomenon 

RNN architectures are well-suited to analyze the time-series nature of Continuous Glucose Monitoring 

(CGM) datasets. By leveraging the sequential nature of the data, RNN models contribute to the 

development of predictive tools that can anticipate hypoglycemic events within specific time frames, 

ultimately enhancing the proactive management of T1DM.  

The primary objective of our research is to develop robust models that can effectively predict 

hypoglycemic events within a timeframe of 60, 75, and 90 minutes (denoted as 'Hypo60', ‘Hypo75', 

and ‘Hypo90') based on features such as age, CGM measurements, insulin doses, and carbohydrate 

intake. 

The model construction begins with the definition of a generic RNN architecture which takes a 

cell type (Simple RNN, GRU, or LSTM) as an argument, creating a Sequential model with a single 

layer of the specified cell type, followed by a Dense layer with sigmoid activation. The input shape is 

set to (4, 1), representing the four features (Age, CGM, Insulin, Carbs) at each time step.  

The dataset is then pre-processed and reshaped for RNN input. The training set, consisting of 

features and corresponding target variable 'Hypo60', is reshaped into a three-dimensional array suitable 

for RNN input. The process is repeated for the testing set, ensuring consistency in model evaluation.  

Monte Carlo simulations are conducted to account for the inherent variability in model training. 

For each simulation, the defined RNN models (Simple RNN, GRU, and LSTM) are instantiated and 
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trained on the reshaped training data the number of epochs for a set (in this case, 10 epochs). The 

trained models are then used to make predictions on the testing set. The results from each simulation 

are stored in separate lists, allowing for subsequent analysis of the predictive performance across 

multiple runs. The experiment is then repeated for prediction horizons of 75 minutes and 90 minutes.  

This methodology ensures a comprehensive evaluation of the RNN models, considering the 

inherent stochasticity in training neural networks. A block diagram representing the methodology is 

given in Figure 4. A detailed algorithm for the described model is given below.   

Algorithm: 

1. Data Loading:  

Load the dataset:  

D = LoadData("diabetes_data.xlsx") 

 

2. Data Preprocessing:  

a. For each patient p: 

   For each row where 'Carbs' is zero: 

     Replace carbs by the mean of the carbs of the same patient 

b. Remove rows where target values are missing                

3. Data Splitting 

Separate training and Testing data: 

  D_train, D_test = TrainTestSplit(D, test_size=0.2, 

random_state=42) 

4. Model Definition:  

State the model creation function: 

function create_rnn_model(cell_type): 

    M = RNNModel(cell_type, num_cells=64) 

    Add one Dense layer with    

     activation='sigmoid')) 

    compile with loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

    return M 

5. Data Reshaping: Reshape data for RNN input: 

   X_train, y_train = ReshapeForRNN(D_train) 

   X_test, y_test = ReshapeForRNN(D_test) 

 

6. Monte Carlo Simulations:  

Number of simulations: 8 

 

For s in range(num_simulations): 
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    Instantiate and train models: 

    M_rnn = create_rnn_model(SimpleRNN) 

    M_gru = create_rnn_model(GRU) 

    M_lstm = create_rnn_model(LSTM) 

     

    TrainModel(M_rnn, X_train, y_train, epochs=10, batch_size=32) 

    TrainModel(M_gru, X_train, y_train, epochs=10, batch_size=32) 

    TrainModel(M_lstm, X_train, y_train, epochs=10, batch_size=32) 

7. Prediction Aggregation: Initialize lists to store predictions: 

y_pred_rnn_list = [], y_pred_gru_list = [], y_pred_lstm_list = [] 

For s in range(num_simulations): 

    Append predictions for each model: 

y_pred_rnn_list.append(MakePredictions(M_rnn, X_test)) 

y_pred_gru_list.append(MakePredictions(M_gru, X_test)) 

y_pred_lstm_list.append(MakePredictions(M_lstm, X_test)) 

8. Performance Metrics Calculation:  

a. Calculate mean predictions: 

  y_pred_rnn_mean = Mean(y_pred_rnn_list) 

  y_pred_gru_mean = Mean(y_pred_gru_list) 

  y_pred_lstm_mean = Mean(y_pred_lstm_list) 

 

b.Calculate performance metrics for each model: 

  metrics_rnn = CalculateMetrics(y_test, y_pred_rnn_mean) 

  metrics_gru = CalculateMetrics(y_test, y_pred_gru_mean) 

  metrics_lstm = CalculateMetrics(y_test, y_pred_lstm_mean) 

9. Confusion Matrix Calculation: Calculate confusion matrices: 

confusion_matrix_rnn = ConfusionMatrix(y_test, y_pred_rnn_mean) 

confusion_matrix_gru = ConfusionMatrix(y_test, y_pred_gru_mean) 

confusion_matrix_lstm = ConfusionMatrix(y_test, y_pred_lstm_mean) 

10. Repeat steps 1 to 9 for target variables ‘Hypo 75’ and 

‘Hypo90’. 
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Figure 4: Methodology Diagram of the prescribed model 

3. Result and Discussion 

The prescribed model is a performance analysis of Recurrent Neural Networks (RNNs) for the 

prediction of hypoglycemia events in diabetic patients - specifically Simple RNN, GRU (Gated 

Recurrent Unit), and LSTM (Long Short-Term Memory) models. In order to evaluate the performance 

of the RNN models for hypoglycemia prediction, several key metrics are considered: accuracy, 

sensitivity, specificity, precision, and the F1 score. 

Accuracy is the ability of the model to predict the two cases of hypoglycemia and non 

hypoglycemia correctly. Sensitivity assesses the model's ability to identify hypoglycemia cases among 

actual positives, reducing false negatives. Specificity measures the model's proficiency in identifying 

cases without hypoglycemia, Precision focuses on the reliability of positive predictions by calculating 

the proportion of properly predicted positives to total predicted positives. Lastly, the F1 score assess 

the balance precision and sensitivity, especially valuable in addressing imbalances in positive and 

negative instances [7]. 

In this comprehensive experiment, the predictive capabilities of Simple RNN, GRU, and LSTM 

models were rigorously assessed in the context of forecasting hypoglycemia. The models were input 

with age, carbs intake, insulin dosage, and previous CGM readings. Their performance was 

meticulously scrutinized across distinct prediction horizons, specifically set at 60, 75, and 90 minutes. 

We shall consider the performance of each model one by one. 

A. Simple RNN 

The Simple RNN model exhibits varying degrees of success in predicting hypoglycemia across 

different prediction horizons (PH60, PH75, PH90). For PH60, the model achieves an accuracy of 

88.99%, showcasing proficiency in overall classification. The trade-off between sensitivity (35.58%) 

and specificity (97.23%) highlights challenges in capturing true positive hypoglycemic cases while 

maintaining high specificity. Precision and F1 Score values for PH60 (66.43% and 46.34%, 

respectively) indicate the model's reliability in making positive predictions, with room for 

improvement in achieving a balanced trade-off between precision and recall. Performance slightly 

diminishes for PH75 (sensitivity: 19.03%, Precision: 73.91%, F1 Score: 30.27%) and PH90 

(sensitivity: 13.75%, Precision: 66.07%, F1 Score: 22.77%), indicating difficulties in correctly 

identifying hypoglycemic cases at extended prediction horizons. The evaluation of the prescribed 

model using Simple RNN is summarised in Table 2. 

Evaluation 

Metric PH60 PH75 PH90 

Accuracy 0.8914 0.8824 0.8744 

Specificity 0.9723 0.9896 0.989 

Sensitivity 0.3558 0.1903 0.1375 
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Precision 0.6643 0.7391 0.6607 

F1Score 0.4634 0.3027 0.2277 

Table 2: Performance evaluation of the Simple RNN model 

The confusion matrix for the Simple RNN model for the three prediction horizons is shown below. 

Confusion Matrix for PH60: 

[[1684   48] 

[ 172   95]] 

Confusion Matrix for PH75: 

[[1713   18] 

[ 217   51]] 

Confusion Matrix for PH90: 

[[1711   19] 

[ 232   37]] 

B. GRU 

For GRU across different prediction horizons (PH60, PH75, PH90), the model demonstrates 

reasonable accuracy, with values ranging from 87.79% to 88.99%. Table 3 describes the performance 

evaluation of the model based on GRU for the varying prediction horizons. 

Performance 

Metric PH60 PH75 PH90 

Accuracy 0.8899 0.8799 0.8779 

Specificity 0.9677 0.9804 0.9884 

Sensitivity 0.3858 0.2313 0.1673 

Precision 0.6478 0.6458 0.6923 

F1Score 0.4836 0.3407 0.2695 

Table 3: Performance evaluation of the GRU model 

The specificity remains consistently high, indicating the model's proficiency in correctly 

identifying non-hypoglycemic instances. However, there is a notable trade-off in sensitivity, especially 

for extended prediction horizons (PH75 and PH90), suggesting challenges in correctly capturing 

hypoglycemic cases. Precision and F1 Score values for all horizons emphasize the model's reliability 

in positive predictions, but there is room for improvement in achieving a balanced trade-off between 

precision and sensitivity. These results suggest that GRU performs reasonably well in predicting 

hypoglycemia, particularly at shorter prediction horizons.  

The confusion matrix for the GRU-based model for the time frames of 60, 75, and 90 minutes is shown 

below. 

Confusion Matrix for PH60: 

[[1676   56] 
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[ 164 103]] 

Confusion Matrix for PH75: 

[[1697   34] 

[ 206   62]] 

Confusion Matrix for PH90: 

[[1710   20] 

[ 224   45]] 

C. LSTM 

In the case of LSTM for different prediction horizons (PH60, PH75, PH90), the model exhibits 

consistent accuracy, ranging from 87.79% to 88.94%.  The overall performance of the LSTM-based 

model is visualized in Table 4. 

Performance 

Metric PH60 PH75 PH90 

Accuracy 0.8894 0.8824 0.8779 

Specificity 0.974 0.9752 0.9896 

Sensitivity 0.3408 0.2836 0.1599 

Precision 0.6691 0.6387 0.7049 

F1Score 0.4516 0.3928 0.2606 

Table 4: Performance evaluation of the LSTM model 

Notably, the specificity remains high, indicating the model's proficiency in accurately identifying 

instances without hypoglycemia. However, a discernible trade-off is observed in sensitivity, especially 

for extended prediction horizons (PH75 and PH90), suggesting challenges in effectively capturing 

hypoglycemic cases. Precision and F1 Score values highlight the model's reliability in positive 

predictions, yet there is room for improvement in achieving a more balanced trade-off between 

precision and sensitivity.  

The confusion matrix for the LSTM-based model is provided for the time frames of 60, 75, and 

90 minutes. 

Confusion Matrix for PH60: 

[[1687   45] 

[ 176   91]] 

Confusion Matrix for PH75: 

[[1688   43] 

[ 192   76]] 

Confusion Matrix for PH90: 

[[1712   18] 

[ 226   43]] 
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D. Result Analysis  

In comparing the performances of the three models for the prediction horizon of 60 minutes (PH60), all 

models—Simple RNN, GRU, and LSTM—demonstrate robust accuracy, with Simple RNN and GRU both 

achieving an accuracy of 88.99%, and LSTM close following at 88.94%. Regarding specificity, Simple RNN, 

and LSTM exhibit similarly, high values of 97.23% and 97.40%, respectively, while GRU slightly trails at 

96.77%. For sensitivity, GRU outperforms the others with a value of 38.58%, whereas Simple RNN and LSTM 

have sensitivities of 35.58% and 34.08%, respectively. In terms of precision, LSTM leads with 66.91%, followed 

closely by Simple RNN at 66.43%, and GRU at 64.78%. The F1 Score, representing a harmonic mean of 

precision and sensitivity, is highest for GRU at 48.36%, followed by Simple RNN at 46.34%, and LSTM at 

45.16%. A graphical representation of the same is provided in Figure 5. 

 

Figure 5: Performance Evaluation of Simple RNN, GRU, and LSTM for PH60 

For the prediction horizon of 75 minutes (PH75), comparing the performances of the three models 

reveals nuanced differences. In terms of accuracy, all models—Simple RNN, GRU, and LSTM—

display similar performance, with values ranging from 87.99% to 88.24%. Notably, specificity values 

are consistently high, indicating proficiency in correctly identifying instances without hypoglycemia. 

Simple RNN achieves the highest specificity at 98.96%, followed closely by LSTM at 97.52%, and 

GRU at 98.04%. However, the trade-off between sensitivity and specificity varies, with GRU leading 

in sensitivity at 23.13%, followed by LSTM at 28.36%, and Simple RNN at 19.03%. Precision values 

show a similar trend, with Simple RNN having the highest precision at 73.91%, followed by LSTM at 

63.87%, and GRU at 64.58%. The F1 Score, reflecting a balance between precision and sensitivity, is 

highest for LSTM at 39.28%, followed by GRU at 34.07%, and Simple RNN at 30.27%. These results 

indicate that for PH75, LSTM demonstrates a slightly superior balance between sensitivity and 

precision compared to the other models. Figure 6 represents the performance evaluation of Simple 

RNN, GRU, and LSTM models for PH75. 

For the prediction horizon of 90 minutes (PH90), a comparative analysis of the three models—Simple 

RNN, GRU, and LSTM—reveals similar overall accuracies, ranging from 87.44% to 87.79%. 

Specificity values remain consistently high across all models, with Simple RNN and GRU achieving 

98.90% and 98.84%, respectively, and LSTM closely following at 98.96%. However, sensitivity values 

are lower for this extended prediction horizon, with GRU leading at 16.73%, followed by LSTM at 
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15.99%, and Simple RNN at 13.75%. Precision values vary, with LSTM demonstrating the highest 

precision at 70.49%, followed by GRU at 69.23%, and Simple RNN at 66.07%. The F1 Score, 

capturing the balance between precision and sensitivity, is highest for LSTM at 26.06%, followed by 

GRU at 26.95%, and Simple RNN at 22.77%. These findings suggest that for PH90, the models exhibit 

comparable performance with slight variations in sensitivity and precision, emphasizing the challenges 

associated with predicting hypoglycemia over longer timeframes. A graphical representation of the 

performance of the three models is provided in Figure 7. Table 5 illustrates a performance comparison 

of the three models throughout the timeframes. 

 

Figure 6: Performance Evaluation of Simple RNN, GRU, and LSTM for PH75 
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Figure 7: Performance Evaluation of Simple RNN, GRU, and LSTM for PH90 

Table 5: Comparison chart of Overall performance of the models 

 Metrics  Models PH60 PH75 PH90 

Accuracy 

Simple 

RNN 0.8914 0.8824 0.8744 

GRU 0.8899 0.8799 0.8779 

LSTM 0.8894 0.8824 0.8779 

Specificity 

Simple 

RNN 0.9723 0.9896 0.989 

GRU 0.9677 0.9804 0.9884 

LSTM 0.974 0.9752 0.9896 

Sensitivity 

Simple 

RNN 0.3558 0.1903 0.1375 

GRU 0.3858 0.2313 0.1673 

LSTM 0.3408 0.2836 0.1599 

Precision 

Simple 

RNN 0.6643 0.7391 0.6607 

GRU 0.6478 0.6458 0.6923 

LSTM 0.6691 0.6387 0.7049 

F1Score 

Simple 

RNN 0.4634 0.3027 0.2277 

GRU 0.4836 0.3407 0.2695 

LSTM 0.4516 0.3928 0.2606 

Based on the study encompassing the specified timeframes, each model—Simple RNN, GRU, and 

LSTM—demonstrates its strengths and trade-offs. For PH60, all models perform comparably, 

showcasing high accuracy and specificity, with subtle differences in sensitivity and precision. For 
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PH75, LSTM exhibits a slightly superior balance between sensitivity and precision. However, for the 

extended prediction horizon of PH90, all models face challenges with lower sensitivity values. 

Considering the trade-offs and overall performance, LSTM emerges as a promising choice, consistently 

maintaining high specificity and demonstrating a balanced trade-off between sensitivity and precision. 

4. Conclusion and future scope 

The study thoroughly analysed and compared the predictive capabilities of Simple RNN, GRU, and 

LSTM models across prediction horizons (PH60, PH75, PH90) for hypoglycemia prediction. The 

models showed commendable accuracies, with nuanced differences in specificity, sensitivity, 

precision, and F1 Score values. When the balance between sensitivity and precision is considered, GRU 

shoed higher F1 Score for PH 60 and LSTM is observed to be the best for PH75, while all models faced 

challenges in maintaining sensitivity for the extended PH90. The study suggests LSTM as a promising 

choice for its consistent performance, showing higher accuracy and F1 score. But the model can be 

further refined and should be validated against diverse datasets to enhance robustness and 

generalizability. 
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