EVALUATION OF ANTICANCER ACTIVITY (HCC) IN NELUMBO NUCIFERA (NELUMBONACEAE) FLOWER EXTRACT BY INVITRO SCREENING METHOD

Corresponding author: Mr.Prabhu T*, THIRUNAVUKARASU A, JASWINBENITTA R, ABINAYA N, PRADEESHWAR K M, VIJAY ANANTH V

Department of Pharmacology SNS College of Pharmacy and Health Sciences Coimbatore 641035. Tamil Nadu.

*Correspondence: prabhu26031994@gmail.com

ABSTRACT

Nelumbo Nucifera, a revered traditional medicine has been scientifically investigated for its potential therapeutic application in treating Hepatocellular Carcinoma (HCC), a devastating form of liver cancer. A Comprehensive phytochemical analysis revealed the presence of an array of bioactive compounds, including alkaloids, flavonoids, polyphenols, tannins and terpenoids. The extract demonstrated an impressive spectrum of biological activities, encompassing enhanced cell viability, potent antiproliferative effects, robust antioxidant properties and significant antiinflammatory activity. The antioxidant efficacy was meticulously evaluate using the DPPH (2,2 diphenyl-1-picrylhydrazyl) method, while the DLA (Dalton's Lymphoma assay) method was employed to investigate apoptotic cell death. Additionally, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide) assay was used to evaluate the cytotoxicity, proliferation, and viability of (Hepg2-cell line) cells. The extracts potential anti-HCC activity was rigorously analyzed using UV spectrophotometry (200-400nm) and quality control tests, including thin – layer chromatography (TLC). This study provides compelling statistical data supporting the therapeutic potential of Nelumbo Nucifera against HCC, underscoring its promise as a novel adjunctive treatment strategy for this debilitating disease.

Introduction:

Nelumbo Nucifera, also known as the sacred lotus, is a plant that has been used in traditional medicine for centuries. Recent studies have shown that it possesses anticancer properties, making it a potential adjunct therapy for various type of cancer.

Nelumbo Nucifera contains several bioactive compounds, including the presence of Alkaloids such as Iso-quinoline and Aporphine alkaloids have been shown to inhibit cancer cell growth and induce apoptosis and the presence of Flavonoids such as Quercetin and Kaempferol have anti-oxidant and anti-inflammatory property which can help prevent cancer cell proliferation and the presence of Phenolic acids such as Ferulic acid and Sinapic acid have been shown to inhibit cancer cell growth and induce apoptosis.

Anti-Cancer mechanisms studies have demonstrated that *Nelumbo Nucifera* extracts and isolated compounds can inhibit cancer cell growth by inducing cell cycle arrest and apoptosis and prevent Angiogenesis by inhibiting the formation of new blood vessels that feed cancer

cells and enhance chemotherapy by increasing the sensitivity of cancer cells to chemotherapy. And also reduce inflammation by inhibiting pro inflammatory cytokine and enzymes. Hepatocellular carcinoma (HCC) is a type of cancer that originates in the liver's hepatocytes, which are the main cell type of the liver. HCC is characterized by Uncontrolled cell growth, Invasion and Metastasis and Dysplasia and architectural distortion. Symptoms of Hepatocellular Carcinoma are Abdominal swelling and pain, Dark urine and Pale stools, Fatigue, Fever, Itching, Jaundice, Loss of appetite, Nausea and vomiting, Weight loss. Chronic Hepatitis B, Chronic Hepatitis C, Liver Cirrhosis, Alcohol consumption, Smoking, Genetic disorders, Hepatitis D virus, Hepatitis E virus and Schistosomiasis are the common risk factors. Imaging tests (Ultra- sound CT-scan, MRI-scan), Biopsy-Tissue culture, Blood tests-CBC, LFT and Viral markers test are the diagnosis of Hepatocellular Carcinoma and the treatment carries Surgical resection, Liver transplantation, Loco-reginal therapies and Systemic therapies.

MATERIAL AND METHODS:

PLANT MATERIAL:

The flowers of Nelumbo Nucifera were collected from a local botanical garden. The collected flowers were authenticated by a Scientist "F" & Head of Office in Tamil Nadu Agricultural University which is located in Coimbatore and were washed thoroughly with distilled water to remove any dirt or impurities. The flowers were then air dried at room temperature.

Preparation of Plant Material

- 1. Collect fresh lotus flowers depending on the desired extract.
- 2. Clean the plant material thoroughly with distilled water.
- 3. Dry the plant material using a dryer or air dryer to remove excess moisture.

Solvent Selection and Extraction

- 1. Choose a suitable solvent, such as ethanol or methanol, depending on the desired compound to be extracted.
- 2. Weigh the flower.
- 3. Add the chosen solvent to the extraction vessel, ensuring the plant material is completely submerged
- 4. Grind the flower with suitable solvent of 1:3 ratio.
- 5. Seal the extraction vessel and allow the mixture to steep for a specified period (e.g., 24-48 hours).
- 6. Filter the resulting extract using a filter paper.

STATISTICAL ANALYSIS:

UV

The UV spectroscopy was performed using the sample at 200nm,300nm,400nm.

TLC

TLC was performed for the individual components such as

<u> </u>	1 .	
Alkaloids	Nuciferine: λ max=280-300nm(0.567)	
Flavonoids	Quercetin: λmax=255-265nm	
	(0.579)	
	(0.577)	
	Kaempferol: λmax=230-255nm	
	(0.568)	
71 11 1 11	` '	
Phenolic Acids	FerulicAcid:λmax=280-300nm	
	(0.5789)	
	(0.6 / 05)	
	G 111 A 11A 21A 22A	
	GallicAcid:λmax=210-220nm	
	(0.567)	
	(5.55.)	

INVITRO CYTOTOXICITY SCREENING METHOD:

- DPPH Assay to investigation of antioxidant property
- DLA Assay to investigation of apoptotic cells
- MTT Assay to investigation of cell viability, Proliferation and Cytotoxicity.

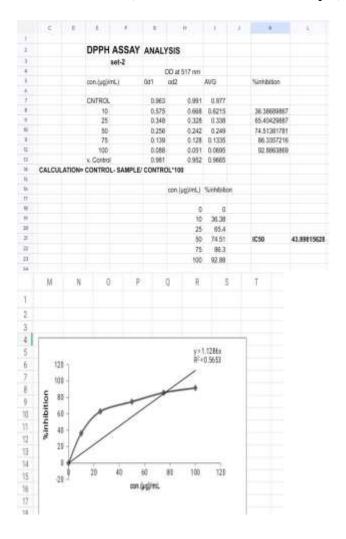
DPPH Assay

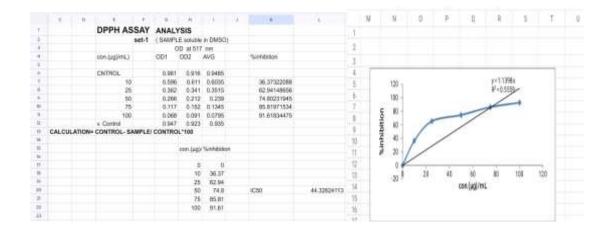
DPPH radical scavenging assay

Materials required

- 1. 2.2, -Di phenyl -1-pieryl Hydroxyl Hydrate
- 2. Methanol
- 3. Test material

DPPH solution was prepared fresh (0.304 mM; 3 mg in 25 ml of Methanol). The freshly prepared DPPH reagent was kept in the dark bottle at room temperature for One to two hours to stabilize the reagent.

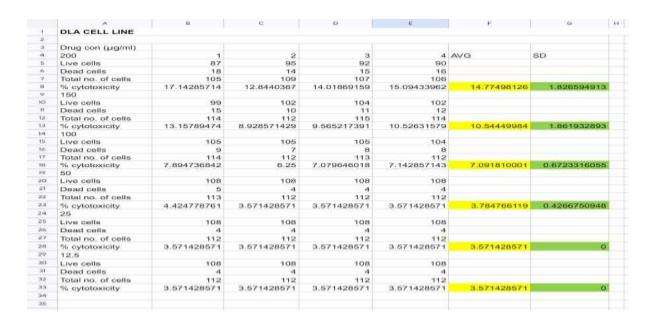



Procedure

About $187\mu l$ of DPPH and different concentrations ($10\text{-}100\mu g/m l$) of test samples were made up to 1ml with methanol (Final concentration of DPPH solution is 0.056 mM). The tubes were then kept in dark for 20 minutes at RT ant thereafter optical measurement was made at 517nm against methanol as blank. Percentage inhibition was calculated with respect to Reading of control tubes.

Calculation % of Inhibition:

(O.D of control – O.D of sample) / O.D of control x 100



DLA Assay:

The tumour cells aspirated from the peritoneal cavity of tumour bearing mice were washed thrice with PBS or normal cell line. Cell viability was determined by trypan blue exclusion method. Viable ceps suspension $(1x10^6 \text{ cells in } 0.1\text{ml})$ was added to tubes containing various concentrations of the test compounds and the volume was made up to 1ml using phosphate buffered cell line (PBS). The control tube contained only cell suspension. These assay mixtures were incubated for 3 hours at 37° C. Further cell suspension was mixed with 0.1ml of 1% trypan blue and kept for 2-3 minutes and loaded on a haemocytometer. In contrast to living cells, dead cells absorb the blue hue of trypan blue. Separate counts of labelled and unstained cells were made.

94 autotoviole	No. c	No. of dead cells	
% cytotoxicity =	No. of live cel	No, of live cells + No. of dead cells	
e	Drug oncentration (μg/ml)	% Cell Death	
	12.5	3.57:±0	
	25	3.57±0	
	50	3.78±0.4	
	100	7.09±0.7	
	150	10.5±1.9	
	200	14.9+1.9	

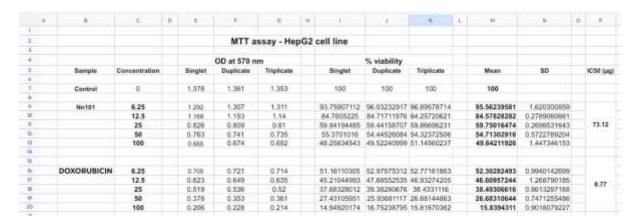
MTT Assay:

- 1. MTT reagent (the solution is filtered through a 0.2 µm filter and stored at 2–8°C for frequent use or frozen for extended periods)
- 2. DMSO
- 3. CO2 incubator
- 4. Micro Plate reader
- 5. Inverted microscope
- 6. Refrigerated centrifuge

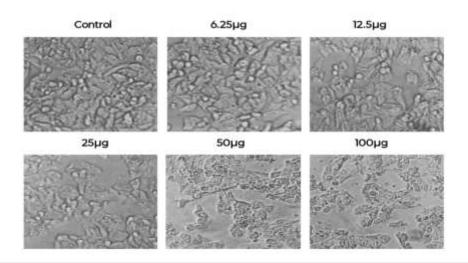
Preparation of test solutions

This experiment was used to create repeated two-fold dilutions (6.25–100 µg) for the MTT assay.

Cell lines and culture medium

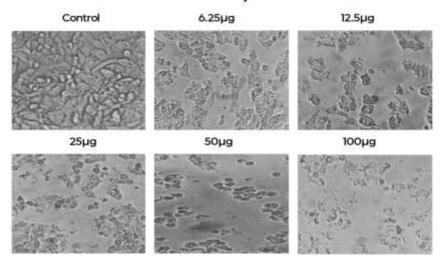

HepG2 cell line was procured from NCCS, stock cell was cultured in MEM medium supplemented with 10% inactivated Fetal Bovine Serum (FBS), penicillin (100 IU/mL), streptomycin (100 µg/mL) in a humidified atmosphere of 5% CO₂ at 37 ^oC until confluent.

Procedure


The monolayer cell culture was trypsinized and the cell count was adjusted to 1.0×105 cells/mL using respective media containing 10% FBS. To each well of the 96 well microtiter plate, $100 \mu L$ of the diluted cell suspension (1×104 cells/well) was added. When

a partial monolayer had developed after 24 hours, the supernatant was removed, the monolayer was once again cleaned with medium, and 100 μ L of test material at various concentrations was applied to the microtiter plates.. The plate was then incubated at 37°C for 24 h in 5% CO₂ atmosphere. After incubation the test solutions in the wells were discarded and 20 μ L of MTT (2 mg/1 mL of MTT in PBS) was added to each well. The plate was incubated for 4 h at 37°C in 5% CO₂ atmosphere. After removing the supernatant, 100 μ L of DMSO was added, and the plate was gently shaken to dissolve the formazan that had formed. The absorbance was measured using a microplate reader set at 570 nm.

Percentage viability = Sample absorbance / Control absorbance x 100



Sample: Nn01(HepG2 cell line)

Sample: DOXORUBICIN (HepG2 cell line)

RESULT:

1.DPPH

The sample showed dose depended DPPH scavenging efficacy with in the range of 10-100 μ g/ml. The average IC50 values observed in two different assay is 42.5 μ g/ml (excel file provided) this suggest the DPPH radical reduction potential of the sample supplied.

2.DLA

Using Dalton's lymphoma ascites cells (DLA), the test compound's short-term in vitro cytotoxicity was investigated. The test compound was dissolved in DMSO and concentration range between 200 μ g/ml to 12.5 μ g/ml was used for the study. Control tube contains 3 dead cells.

3.MTT

IC50 value of the given test sample Nn01 and DOXORUBICIN were found to be $73.12\mu g$, and $8.77\mu g$.

DISCUSSION:

The present study investigated the antioxidant, cytotoxic, and antigenotoxic potential of Nelumbo nucifera flower extract (Nn01). The results demonstrated that Nn01 possesses moderate antioxidant activity, as evidenced by its DPPH radical scavenging efficacy. The extract also exhibited cytotoxic activity against cancer cells, although its potency was lower compared to the positive control, Doxorubicin. Furthermore, the DLA assay results suggested that Nn01 may have a protective effect against DNA damage or genotoxicity. The findings of this study are consistent with previous reports on the pharmacological

activities of Nelumbo nucifera. The antioxidant and cytotoxic properties of Nn01 may be attributed to the presence of bioactive compounds such as flavonoids, phenolic acids, and alkaloids. These compounds may play a crucial role in protecting cells against oxidative stress, inflammation, and damage caused by free radicals. The results of this study have implications for the development of novel therapeutic agents against cancer and other diseases associated with oxidative stress and DNA damage. However, further studies are necessary to fully elucidate the mechanisms of action underlying the observed activities and to evaluate the in vivo efficacy and safety of Nn01. In conclusion, the present study demonstrates the potential of Nelumbo nucifera flower extract as a natural antioxidant, anticancer, and antigenotoxic agent. Further research is warranted to unlock its therapeutic potential and to explore its potential applications in medicine.

Bibliography:

- 1.Current advances in the science of osteosarcoma: Research perspectives: Tumor biology, organ microenvironment, potential new therapeutic targets, and canine models. Cham: Springer Cham; 2020. Current Advances in the Science of Osteosarcoma: Research Perspectives: Tumor Biology, Organ Microenvironment, Potential New Therapeutic Targets, and Canine Models.
- 2.Osteosarcoma in adolescents and adults: survival analysis with and without lung metastases. Aljubran AH, Griffin A, Pintilie M, Blackstein M. Ann Oncol. 2009;20:1136–1141. doi: 10.1093/annonc/mdn731.
- 3.Bukhari MH, Qamar S, Batool F. Osteosarcoma Diagnosis, Mechanisms, and Translational Developments. IntechOpen; 2019. Differential diagnosis of osteogenic tumors in the context of osteosarcoma.
- 4. Novel fibroblast growth factor receptor inhibitors: potential therapeutic approach in oral cancer treatment. Shree Harini K, Ezhilarasan D, Lakshmi T. Oral Oncol. 2022;132:105983. doi: 10.1016/j.oraloncology.2022.105983.
- 5.IntechOpen; 2019. Osteosarcoma Diagnosis, Mechanisms, and Translational Developments.
- 6.Asha K, Sachin A, Muzammil S. Osteosarcoma. InTech; 2012. Chemotherapy in osteosarcoma.
- 7.Personalized mRNA cancer vaccines with immune checkpoint inhibitors: a promising therapeutic approach in oral cancer patients. Gheena S, Ezhilarasan D. Oral Oncol. 2023;137:106282. doi: 10.1016/j.oraloncology.2022.106282
- 8.Rykov MY, Sengapova ER. Osteosarcoma Diagnosis, Mechanisms, and Translational Developments. IntechOpen; 2019. Treatment of children with osteosarcoma
- 9.Rheingold SR, Neugut AI, Meadows AT. Holland-Frei Cancer Medicine. 6th edition. Hamilton: BC Decker; 2003. Therapy-related secondary cancers.
- 10. Nutritional and therapeutic importance of Nelumbo nucifera (Sacred lotus) Zaidi A, Srivastava AK. Era's J Med Res. 2019;6:98–102.

- 11. Exploration of flavonoids as lead compounds against Ewing sarcoma through molecular docking, pharmacogenomics analysis, and molecular dynamics simulations. Yasir M, Park J, Han ET, et al. Molecules. 2023;28 doi: 10.3390/molecules28010414.
- 12.Anticancer activity of Nelumbo nucifera stamen extract in human colon cancer HCT-116 cells in vitro. Zhao X, Feng X, Wang C, Peng D, Zhu K, Song JL. Oncol Lett. 2017;13:1470–1478. doi: 10.3892/ol.2016.5547
- 13. Analysis of DNA breaks, DNA damage response, and apoptosis produced by high NaCl. Dmitrieva NI, Burg MB. Am J Physiol Renal Physiol. 2008;295:0–88. doi: 10.1152/ajprenal.90424.2008.
- 14.Traditional medicinal plants as a source of inspiration for osteosarcoma therapy. Kazantseva L, Becerra J, Santos-Ruiz L. Molecules. 2022;27 doi: 10.3390/molecules27155008.
- 15.Hassan MM, Spitz MR, Thomas MB, et al. Effect of different types of smoking and synergism with hepatitis C virus on risk of hepatocellular carcinoma in American men and women: Case-control study. Int J Cancer. 2008;123:1883–1891.
- 16.Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013 Mar;19(3):329-336. Epub 2013 Feb 10.
- 17.Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004.
- 18. Howlader N, Noone AM, Krapcho M, et al (eds). SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations), National Cancer Institute. Bethesda, MD
- 19.Ishizuka M, Kubota K, Shimoda M, Kita J, Kato M, Park KH, Shiraki T. Effect of menatetrenone, a vitamin k2 analog, on recurrence of hepatocellular carcinoma after surgical resection: a prospective randomized controlled trial. Anticancer Res. 2012 Dec;32(12):5415-5420.
- 20.Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Canc J Clin. 2011;61:69–90.
- 21.Lencioni R, Chen XP, Dagher L, Venook AP. Treatment of intermediate/advanced hepatocellular carcinoma in the clinic: How can outcomes be improved? Oncologist. 2010;15(suppl 4):42–52.
- 22.Lencioni R, Crocetti L. Local-regional treatment of hepatocellular carcinoma. Radiology. 2012;262:43–58.
- 23.Lewandowski RJ, Geschwind JF, Liapi E, Salem R. Transcatheter intraarterial therapies: Rationale and overview. Radiology. 2011;259:641–657.
- 24.Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390.

- 25.Maheshwari S, Sarraj A, Kramer J, El-Serag HB. Oral contraception and the risk of hepatocellular carcinoma. J Hepatol. 2007;47:506–513.
- 26.Marrero JA, Fontana RJ, Fu S, et al. Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma. J Hepatol. 2005;42:218–224.
- 27.Miyake Y, Kobashi H, Yamamoto K. Meta-analysis: The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. J Gastroenterol. 2009;44:470–475.
- 28.National Cancer Institute. Physician Data Query (PDQ). Adult Primary Liver Cancer Treatment. . Accessed at www.cancer.gov/cancertopics/pdq/treatment/adult-primary-liver/healthprofessional on February 29, 2016 .
- 29. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Hepatobiliary Cancers. V.1..2016. Accessed at www.nccn.org on February 29, 2016
- 30.Pan G, O'Rourke K and Dixit VM: Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem. 273:5841–5845. 1998
- 31.Hu Y, Benedict MA, Wu D, Inohara N and Núñez G: Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA. 95:4386–4391. 1998
- 32.Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014.
- 33.Seo EY and Kim WK: Red ginseng extract reduced metastasis of colon cancer cells in vitro and in vivo. J Ginseng Res. 35:315–324. 2011
- 34.Deng W, Sui H, Wang Q, He N, Duan C, Han L, Li Q, Lu M and Lv S: A Chinese herbal formula, Yi-Qi-Fu-Sheng, inhibits migration/invasion of colorectal cancer by down-regulating MMP-2/9 via inhibiting the activation of ERK/MAPK signaling pathways. BMC Complement Altern Med. 13:652013.