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ABSTRACT 

 

This study investigates the impact of different similarity measures and fusion 

statistics on vital signs data fusion, comparing the performance of linear and 

nonlinear methodologies. We compared kappa (κ) and tau (τ) as nonlinear 

measures against Pearson correlation (ρ) as linear measures, with different 

statistical approaches (mean, median, and Orthogonalized Gnanadesikan-

Kettenring (OGK)). Performance was assessed using grand mean absence 

statistics (R̄) across four competing models with different combinations of 

original observations (y) and transformed data (d(y)) for parameter estimation 

(θ) and fusion statistics (g(y)). The results demonstrate that nonlinear measures 

consistently outperform linear measures, with κ providing higher R̄ estimates 

than τ across all statistical approaches. For nonlinear measures, using original 

observations for parameter estimation and transformed data for fusion statistics 

consistently yielded superior results. Linear measures showed more variability 

in performance depending on the specific measure and statistical approach 

used. The robust statistics (median and OGK) generally provided better 

performance than mean statistics, likely due to their resistance to outliers. This 

methodology offers significant practical utility for public health applications, 

including detection of malfunctioning organs, design of clinical tests, 

comprehensive health monitoring, and automated problematic vital organ 

identification. The approach demonstrates particular promise for conditions 

like diabetes, where current diagnostic methods rely on isolated measurements 

rather than integrated vital sign assessment. 

 

Introduction 

Physiological vital signs play a crucial role in emergency health and have become an integral part 

of healthcare research. Medical research exclusively focuses on vital signs fusion because it helps 

in improving patient monitoring and identifying clinical deterioration early. The health condition 

of a patient becomes evident through measurements of heart rate along with respiratory rate, blood 
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pressure, body temperature, and other vital signs. Various data fusion techniques enable the 

integration of vital signs parameters which elevate health assessment accuracy and reliability for 

faster interventions and superior patient results (Charlton et al., 2016; Sun et al., 2018).  Recent 

research indicates that optimization of data fusion requires proper implementation of similarity 

measures and fusion statistics. The extraction and optimization of vital sign information from 

various data sources become more effective when healthcare professionals apply Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks (Yang et al., 2021; 

Liu et al., 2019).  

These techniques not only increase the accuracy of vital sign monitoring but also make it easier to 

incorporate extra contextual data, like patient activity and ambient conditions, which can enhance 

the monitoring systems' predictive power (Yang et al., 2021).  The quality standards of vital sign 

information determine how well clinical decision support systems operate. The quality of vital sign 

information including accuracy and completeness and timeliness influences both the generation of 

valid triage scores and clinical choice solutions (Skyttberg et al., 2016). Robust data fusion 

methods allow healthcare providers to enhance the quality of their patient care data while handling 

missing data situations (Rossum et al., 2023).  

The methods for similarity measure along with fusion criteria demonstrate substantial influence 

on vital signs data fusion which impacts both clinical operational aspects and the technical phase 

of processing. To improve patient outcomes and advance the area of medical informatics, it will 

be crucial to comprehend and optimize these characteristics as healthcare continues to shift 

towards more data-driven approaches (Sadasivuni et al., 2021). 

Wang et al. (2021) developed the basic concept for composite similarity measurement by 

combining several features to enhance fusion precision. Multi-feature approaches in their research 

achieved outstanding outcomes which surpassed traditional single-feature methods. Ofori et al 

(2024) developed a fusion method using composite spatial similarity measure modelling. Their 

framework was built on mixture random variate using information provided by the 

interrelationships among variables. That allowed the latent unidimensional data to be generated as 

a weighted linear combination of the multivariate data, providing an easy way to model the weights 

in terms of desirable data features of interest.  

The current paper describes a new empirical method to evaluate how similarity measures together 

with fusion statistics influence vital signs data fusion. This method was developed solely for 

composite similarity assessments in physiological vital signs fusion operations. The algorithm 

utilizes built-in relationships between vital signs together with characteristics and measurement 

uncertainties.  

Materials and Methods 

Data 

The data example here is based on the traumatic vital sign data employed by Mensah et. al. (2024). 

The data was sourced from the Komfo Anokye Teaching Hospital (KTH). We used a de-identified 

subset characterized by variables RR, HR, SBP, DBP, TEMP, SPO2, RBS, and MAP, of dimension 

4064 × 8. 

Model 

Physiological vital sign data fusion focuses on having single random variable for p corrected set 

of variables generated from the same source so that a single model can be developed instead of 

multiple dependent models. Given p random variables with interrelationships say, 
1 2, , , ,py y y  a 

typical data fusion model according to Ofori et al., (2024), assumes the form  
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  for distributional validity of the 

fused variable .y  The choice of   and ijg y are crucial in data fusion as each comes with its 

impact on the resultant one-dimensional data pattern. It is thus better to explore varied types 

specifications spanning linear and non-linear similarity measure-based statistics for θ and fusion 

statistics with automatic self-controlled and non-controlled data issues to assess their impact on 

data fusion. We consider the following similarity measure functions for estimating θ  
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The actual empirical computation of 
ij based on (2) and (3) following Ofori et al. (2024) considers 

the mean, median, and Orthogonalized Gnanadesikan Ketterning (OGK) (Maronna et al., 2019, 

Mensah et al., 2022) defined as 
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By (5), a corresponding OGK θ11 is computed as 
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where b = 4.5, 0  and 0  give the median and absolute deviation (MAD) of 
1 j  respectively.  

A corresponding estimate of θ suing (4) is computed as 
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Choice of statistics for θ and g(y) 
We consider the choice of potential data and statistics for computing θ and g(y) respectively, as 

their choice can influence the resultant data pattern both positively and negatively. Importantly, 

both have the potential for handling hidden data issues that may affect model building at the 

variable level. As such, it must be controlled automatically to avoid unnecessary drastic effects in 

the combined form. In particular, we consider the observation, y, and its feature counterpart, d(y) 

so that g(y) can be set as  g y y and   ( )g y d y . With this θ can be computed using y and 

d(y). Thus, it is easy to see the possible fusion models that can be generated from the possible 

combinations of the resulting θs based on the three similarity measures (2), (3) and (4) and g(y)s. 

In what follows, we provide detail on the derivation of d(y) statistics. Moments of random variables 

provide viable sources of features for handling hidden data issues such as extreme, repeated values 

based on their natural function of correct weighting information. Let y generate probability density 

function f(y). Then, its t moment about the origin is computed as 

( )                            (9)k tE Y y f y dy      

Obviously, the data for computing kE Y    has the form ( ).ty f y  Thus, this can be viewed as a 

feature of y under the probability density space since there is a direct link with the y in terms of 

recovery (Mensah et al., 2022). Based on above information, we set d(y) as   

( ) ( ).                                  (10)td y y f y  

The underlying probability density f(y) computed using the kernel density estimation implemented 

in R (Scott, 2015, Silverman, 1986). Table1 provides a comprehensive summary of possible 

models that results from the above data for computation of θ and statistics for use as fusion statistic, 

g(y).   

Table 1: Candidate Competing Models 

Data for θ and statistics for g(y)  

Similarity Measure   ( )g y  

  y, d(y)  y, d(y)  
  y, d(y)  y, d(y)  

rS  y, d(y)  y, d(y)  
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The computation of estimates for parameters 1 2 3 1 2 3, , , , ,a a a b b b follow Ofori et al., (2024). 
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where we define (1),  (2), , ( )n    are the order statistics of ,  and ( )  and ( )d y d y  represent 

the mean and median of ( )d y respectively.  

We outline the channels for automatic control of data issues, key aspects of the similarity measures 

bring the novelty of specifications here. Typical automatic control of data issues functionality the 

similarity measures are captured in   for (2) and (3) and   for (4) while in the case of , it is 

induced in the differences between competing observations  .i jy y  Thus, all levels of point-

auto-relationships are captured with high weight for near points and low weights for far ones. 

Finally, the usage of d(y) as input data for   and   ensures the multiple automatic control of data 

issues iterated in this paper. It becomes straightforward to appreciate the levels of automatic 

controls that the above data combinations offer in fusion. For example, (y, y) with any method for 

computing θ say mean, median and OGK will generate the least number of automatic controls 

based on any similarity measure.  

 

 

Vital sign absence relevance statistics  

We analyze the impact of similarity measure and choice of fusion statistics via vital sign relevance 

in y  based on measures. Consider the recovery model for  jg y  obtained by solving (1) 
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  then by (11), it can be seen that the statistic  ilM y  

Provides insight into how much other vital sign variables contribute towards the recovery of 

variable 
jy . Thus, source for an assessment to quantify how much the absence of 

jy  to the 

generation of y  if all variables operate together. Define  jR y as the mean weighted 

contribution of all other variables due to the absence of 
jy ,  
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where N denotes the total number of observations in all variables without 
jy . A grand statistic 

based on (12) can be computed and used to conduct impact analysis of the choice of data for 

computing θ as well as fusion statistic. 
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Performance evaluation 
The quality of data recovery methods can be assessed as in the usual model fitting performance 

evaluations by considering the recovered data as the fitted and comparing it with the truth. With 

this view the usual measures of model fit becomes applicable and useful within the data fusion 

framework. In some cases, statistical measure of fit may not fully satisfy model evaluation 

purposes, thus can be complicated with some relative efficiency measures. For the assessment 

here, we define in addition to measures of fit, we device some relative efficiency measure. The 

fusion data recovery error statistics considered are the Root Mean Squared recovery Error 

(RMSRE), Root Mean Absolute Recovery Error (RMARE) and Root Standard Mean Absolute 

Fusion Error (RSMAFE) defined for true data y and its recovered counterpart, ŷ  as follows. 
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In terms of recovery efficiency, we define a statistics of the form  
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Results and Discussion 

The study evaluated various combinations of fusion statistics and similarity measures to 

understand their effects on vital signs data fusion by changing weight parameters (θ). The 

evaluation produced essential results that emerged from different methodological approaches. The 

empirical values of spatial covariance parameters (Table 2) show significant variation across the 

eight vital sign variables (y₁ through y₈). Parameter a₁ ranges from 0.2599 to 0.4897, with y₆ 

showing the highest value (0.4897) and y₅ the lowest (0.2599), indicating varying levels of short-

range spatial dependency. 

Table 2: Empirical values of spatial covariance parameters 
 

  Empirical Estimates   

Parameter y1 y2 y3 y4 y5 y6 y7 y8 

a1 0.4426 0.3291 0.3217 0.3139 0.2599 0.4897 0.2923 0.3192 

a2 0.4885 0.3538 0.3417 0.3526 0.2557 0.4690 0.2851 0.3418 
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a3 0.8125 0.5315 0.5619 0.5509 3.2094 1.6008 1.2660 0.5493 

b1 1.8416 1.6428 1.7644 1.7607 12.3985 3.3410 4.3378 1.7292 

b2 1.8230 1.6428 1.7644 1.7607 1.8009 3.3410 4.3378 1.7292 

b3 1.8230 1.6428 1.7644 1.7607 1.8009 2.9412 4.3378 1.7292 

Source: Authors 

The empirical values of spatial covariance parameters show significant variation across the eight 

vital sign variables (y₁ through y₈). Parameter a₁ ranges from 0.2599 to 0.4897, with y₆ showing 

the highest value (0.4897) and y₅ the lowest (0.2599), indicating varying levels of short-range 

spatial dependency. The values for parameter a₂ follow comparable patterns while showing 

somewhat higher numbers from 0.2557 to 0.4885. Parameter a₃ exhibits significant variability 

through its measured values that extend from 0.5315 to 3.2094 where a high value occurs 

specifically in y₅ (3.2094). Data shows that the b₁, b₂, b₃ parameters demonstrate consistent 

tendencies within each variable while displaying significant differences between variables and b₁ 

for y₅ reaches exceptionally high levels at 12.3985. The b-values of y₆ and y₇ stand out from all 

other variables’ b-values. All variables keep their b-values stable throughout the three-

measurement points b₁, b₂, b₃. 

In terms of performance of nonlinear similarity measures, throughout various weight calculations 

κ() and τ() showed identical patterns of performance in vital sign fusion analyses. The performance 

of nonlinear measures is generally consistent in the grand mean of all absence statistics (  R y  

across the two measures: kappa (κ()) and tau (τ()) using mean, median, and OGK statistics for all 

the competing models. Higher  R y values indicate a greater impact on vital sign fusion in terms 

of efficient calibration of vital signs relevance to a latent underlying one-dimensional pattern that 

could be viewed as degree of health, if it is of interest to measure health based the joint operation 

of vital signs. The fusion performance for the mean    with κ() measure (Table 3) shows that 

using the  original observation (y) as data for computing θ and d(y) as fusion statistic (g(y)) gives 

an overall higher  R y  (4.0229) among the four possible competing models.  This result is 

consistent with using τ() measure. It also indicates an overall  R y  of 3.5837 for using y as data 

for computing θ and d(y) for fusion statistics. Also, using d(y) for both θ and g(y) has an  R y  of 

2.3312. This consistency is also seen in all the possible competing models across the median    

(Table 4) and OGK  OGK (Table 5).  This is followed by the use of d(y) as data to compute both 

θ and g(y) (2.2792). It can be seen that data specific combinations (y, d(y)), (d(y), y) and (d(y), 

d(y)) always yield better grand mean absence value. This performance is attributed to the ability 

to handle within vital sign specific data issues such as extreme values, repeated values, point-wise 

interrelationships.  

According to Table 3 (mean-based weight) for κ() similarity measure, using raw data (y) for both 

θ and g(y) yields the lowest MSFE (0.0358). Also, feature-based approaches d(y) shows higher 

error rates when used for θ as MSFE increases to 0.1093. Again, d(y) produces an MSFE of 0.0644 

when used for g(y).  
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Table 3: κ(), τ () : Fusion  performance  for   (Mean) 

  Data for θ and statistics for g(y) 

 
Measure data for θ g(y) M SF E SM AF F E M AF E  R y  

κ() 

 
y y 0.0358 0.1382 2.3353 -0.75026 

 y d(y) 0.0644 0.2326 0.8750 4.02293 

 d(y) y 0.1093 0.1620 1.3975 -0.15307 

 d(y) d(y) 0.0667 0.2390 0.8750 2.27924 

τ () 
y y 0.0350 0.1367 1.3627 -0.52309 

 y d(y) 0.0644 0.2329 0.8750 3.58370 

 d(y) y 0.1095 0.1616 1.5796 -0.15842 

 d(y) d(y) 0.0906 0.2786 1.0180 2.33124 

Source: Authors 

Table 4: κ(), τ () : Fusion  performance  for   (Median) 

Data for θ and statistics for g(y) 

Measure data for θ g(y) M SF E M AF E SM AF E  R y  

κ() 

κ() 
y y 0.0350 1.5323 8.5066 -427743707 

 y d(y) 0.0646 0.2330 0.8750 7420277938 

 d(y) y 0.1082 0.1624 1.8011 -0.15381 

 d(y) d(y) 0.0667 0.2391 0.875 2.25383 

τ ()  

τ () 
y y 0.0341 0.1360 1.4820 -0.63461 

 y d(y) 0.0646 0.2335 0.8750 3.93213 

 d(y) y 0.1087 0.1619 1.4263 -0.15955 

 d(y) d(y) 0.0910 0.2795 1.0198 2.31745 

Source: Authors 

According to Table 4 (median-based weights), both similarity measures show improved 

performance compared to mean-based weights. The κ() measure with raw data achieves MSFE of 

0.0350. The τ() measure shows further improvement with MSFE of 0.0341. Also, the feature-based 

fusion maintains higher error rates but shows more stability. Meanwhile, notable difference exists 

in R̄(y) values, with extreme values for some combinations. The OGK-based weights (Table 5) 

show performance metrics that closely mirror median-based weights. There are slight 

improvements in stability across different combinations with more consistent R̄(y) values 
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compared to other weight types. It really maintains the pattern of better performance with the raw 

data fusion. 

Table 5: κ(), τ () : Fusion  performance  information  for θOGK  

Data for θ and statistics for g(y) 

Measure data for θ g(y) M SF E M AF E SM AF E R¯(y) 

κ() 

κ() 
y y 0.0350 0.1376 1.5323 -407738607 

 y d(y) 0.0646 0.2330 0.8750 7410269113 

 d(y) y 0.1082 0.1625 1.8011 -0.15337 

 d(y) d(y) 0.0916 0.2802 1.0212 2.25355 

τ ()  

τ () 
y y 0.0341 0.1360 1.6027 -0.63334 

 y d(y) 0.0645 0.2334 0.8750 3.92488 

 d(y) y 0.1086 0.1619 1.4882 -0.15902 

 d(y) d(y) 0.091 0.2795 1.0199 2.31749 

Source: Authors 

The performance assessment of linear similarity measure on the other hand shows differences in 

 R y  across the two measures considered: Pearson (ρ()) and Euclidean (Sr) using the mean, 

median and, the OGK for all the possible competing models. Fusion performance for  (Table 5) 

with ρ() measure indicates that using the original observations in computing both θ and g(y) 

provides the best  R y  of 3.1907. This is followed by the use of d(y) for both θ and g(y) (0.1307). 

The story is different from fusion performance with the median (Table 7) and the OGK (Table 8). 

The median shows that the usage of d(y) for θ and y for computing g(y) provides a better estimate 

of  R y  (0.2559). Meanwhile, the fusion performance with the OGK under the Pearson measure 

proves that the usage of d(y) for calculating both θ and g(y) is the best  R y  estimate compared 

with all the competing models. The performance of linear similarity measures (Tables 6-8), 

throughout various weight calculations showed identical patterns of performance in vital sign 

fusion analyses. The mean-based weight showed significantly different performance patterns from 

nonlinear measures. Also, the feature-based fusion shows remarkably low error rates with MSFE 

of 0.0056 for (y, d(y)) combination,  

Table 6: Linear similarity measure: Fusion performance for θ with y  (Mean) 

Data for θ and statistics for g(y) 

 

Measure data for θ g(y) M SF E M AF E SM AF E R¯(y) 

ρ() y y 0.8564 0.1612 0.1612 3.19073 
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 y d(y) 0.0056 0.0269 0.0269 -0.30289 

 d(y) y 0.1617 0.0572 0.0572 0.03966 

 d(y) d(y) 0.0023 0.0284 0.0284 0.13072 

Source: Authors 

MSFE of 0.0023 for (d(y), d(y)) combination. The raw data fusion shows higher error rates (MSFE 

0.8564) with R̄(y) values that are more stable and closer to zero. Likewise, the median-based 

weight (Table 7) exhibited a similar pattern to that of the mean-based weight but with slight 

improvements. Its feature-based fusion maintains excellent performance with MSFE of 0.0056 for 

(y, d(y)), MSFE of 0.0020 for (d(y), d(y)) and a more consistent R̄(y) values across all 

combinations. The OGK-based weight (Table 8) outperforms both the mean and median weight 

for linear measures. It shows the most stable performance across different combinations. The 

feature-based fusion continues to show optimal performance with R̄(y) values indicating a better 

handling of outliers and extreme observations. 

Table 7: Linear similarity measure: Fusion performance for θ with y  (Median) 

Data for θ and statistics for g(y) 

Measure data for θ g(y) M SF E M AF E SM AF E R¯(y) 

ρ() y y 0.8537 0.1589 0.1589 -0.25440 

 y d(y) 0.0056 0.0261 0.0261 -0.01928 

 d(y) y 0.1608 0.0502 0.0502 0.25593 

 d(y) d(y) 0.0020 0.0246 0.0246 0.01219 

Source: Authors 

Table 8: Linear similarity measures: Fusion performance for yOGK 

Data for θ and statistics for g(y) 

 Measure data for θ g(y) M SF E M AF E SM AF E R¯(y) 

ρ() y y 0.8541 0.1587 0.1587 -1.23668 

 y d(y) 0.0056 0.0260 0.026 -0.51719 

 d(y) y 0.1611 0.0527 0.0527 -0.22091 

 d(y) d(y) 0.0021 0.0252 0.0252 0.33651 

Source: Authors 

Both similarity measures reported Minimal Mean Square Fusion Error values from Tables 3-5 

especially when one uses the raw data (y) for weight calculation and fusion statistics conditions. 

The MSFE values remained within the range of 0.0341 to 0.0358 showing effective fusion 

accuracy. The use of derived statistics d(y) resulted in significant increases in error measures when 

utilized for this specific similarity measures. Raw data therefore appears more appropriate for these 

measures. The error pattern analysis shows that the Standardized Mean Absolute Fusion Error 

(SMAFE) revealed specific patterns among the different tested combinations. The SMAFE 
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measurement levels remained higher within both raw data-based fusion statistics and all weight 

calculation methods for nonlinear evaluation entities. Standardization influences fusion outcomes 

to a stronger extent during nonlinear data processing that uses raw data measurements. 

Figures 1-3 show the absence relevance statistics using the Pearson, κ(), and τ() measures. The 

Pearson measure (Figure 1) shows the most consistent patterns across variables with a clear 

differentiation between different fusion approaches. It also shows stable behavior across all eight 

variables. The κ() exhibits higher variability in R(y) values with some extreme values indicating 

potential instability. It also reveals clear differences between raw and feature-based fusion. Lastly, 

the τ() measures shows average stability between Pearson and κ measures with more consistent 

patterns than κ() but less stable than Pearson. It reveals a clear impact of different fusion 

approaches 

 
Figure 1: Nature of R(yj ) statistics based  on Pearson  similarity  measure.  From left to right are 

plots for (y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) respectively. 
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Figure 2: Nature of R(yj )  statistics for κ() similarity measure. From left to right are plots for 

(y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) respectively. 

 
Figure 3: Nature R(yj )  statistics for  τ () similarity measure. From left to right are plots for 

(y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) respectively. 
The visual representations of the R(y) statistics in Figures 1-3 demonstrate the influence that the 

absence of individual vital signs has on fusion processes. Different vital signs exhibit different 

degrees of sensitivity according to the patterns while some vital signs demonstrate stronger 

responses than others. The nonlinear measures exhibited better stability for R(y) patterns than the 

linear measure when working with derived statistics. 

Figures 4-6 present visual evidence which demonstrates that κ() and τ() show uniform performance 

patterns during different weight calculation procedures. The case is somehow different from the 
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~ y 

evidence in Figure 7. These plots show minimal discrepancy between the two measures and stable 

fusion patterns, especially when raw data is used. 

 

Figure 4: Pattern of ỹ  using κ() − black  and  τ () − Red  with  θ̄. From left to right are plots for 

(y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) respectively 

 

 

Figure 5: Pattern of ỹ  using κ() − black  and  τ () − Red  with  θ̃.  From left to right are plots for 
(y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) respectively 
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Figure 6: Pattern of ỹ  using κ() − black and τ () − Red with θOGK . From left to right 

are plots for 

 

 
Figure 7: Pattern of ỹ  using ρ(). From left to right are plots for (y, y), (y, d(y)), (d(y), y) and 

(d(y), d(y)) respectively.  
(y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) respectively. Comparing the two non-linear measures, 

it is obvious that the κ() provides higher estimates of  R y  than τ() across mean, median, and 

OGK statistics. The choice between mean, median, and OGK for non-linear measures is also 

apparent. The estimates  R y  from the mean are lower compared to the median and the OGK. 
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This might be as a result of the mean’s inability to deal with extreme observations and outliers. 

Also, using the original observations for estimating θ and d(y) for the fusion statistic yields higher 

results in  .R y  The linear similarity measure on the other hand is very diverse. The choice of 

fusion performance is dependent on the type of linear measure, the choice of statistic (mean, 

median, and OGK) as well as the competing model. Fusion performance with mean under the 

Pearson measure indicates that the use of y for computing both θ and g(y) is the ideal competing 

model to provide significant  R y estimates. In terms of the OGK, it is better to consider the d(y), 

d(y) competing models. Likewise, the use of d(y) for θ and y for fusion statistics provides better 

 R y estimates with the median. Lastly, the choice of Euclidean measure provides two competing 

models (y, d(y)) and (d(y), d(y)) to provide significant estimates of  R y irrespective of the 

statistic used (mean, median, or OGK). This implies that the kind of data preparation and the 

particular needs of the fusion task should have an impact on the choice of similarity measure. The 

parameter estimation results in Table 2 demonstrate distinctive values for each vital sign which 

demonstrates that the fusion mechanism adjusts to the respective features of individual vital sign 

variables. The ability of this system to adjust through different physiological measurements serves 

as a vital component for achieving accuracy in fusion processes. The current findings suggest that 

the choice of similarity measure and fusion statistics should be carefully considered based on the 

specific characteristics of the vital sign data and the intended application. The results indicate that 

no single approach consistently outperforms the others across all scenarios, highlighting the 

importance of context-specific selection of fusion methods. 

Discussion 
Similarity measures and fusion statistics are important in vital signs data fusion to determine the 

degree of success in the integration and interpretation of physiological fused data. The vital sign 

specific R(y) statistics values can be viewed as a path for evaluating the effectiveness of a given 

similarity measure in calibrating the impact a vital sign’s absence creates in the ecosystem span 

by the vital signs.  Figures 1-4 show the absence relevance statistics path for the eight vital signs 

using the κ(), and τ()  measures etc. The visible dynamic differences in pattern exhibited by vital 

sign specific absence statistics across the similarity measures and four fusion data configurations 

(y, d(y)), (d(y), d(y), d(y)) is a key indicator of flexibility and innovation potential that the new 

area of data fusion method can offer to consolidated handling of public health issues.  

The selection of similarity measures especially the non-linear ones has been proven to improve the 

fusion process by capturing relatively complex relationships that exists in physiological data. For 

instance, the application of the τ() measure helped to make a transition in fused visuals more 

natural, and the median estimation approach helps to retain outlier details which are mentioned by 

researchers in earlier studies (Dziorny et al., 2022; Gao et al., 2018). Among all the estimation 

methods, OGK becomes the most suitable approach, stabilizing both direction changes and outliers 

as key to maintaining effective clinical care and patient outcomes in the case of displaying 

significant big data outliers (Jesus & Silva, 2022). 

Furthermore, the d(y) fusion statistics which form part of the data fusion framework was another 

improvement in the data fusion process. Besides increasing the representation of vital-sign 

relationships, this approach also proves consistent in optimizing the management of hidden data 

problems. Natural interactions happen at the physiological level and traditional statistics are not 

sensitive enough to capture these differences; that is why d(y) statistics were developed (Zhang et 

al., 2015). The use of d(y) statistics along with y-based θ shows that while providing a good 
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balance between signal features and noise reduction, the type of method used impacts the 

effectiveness of data fusion (Habib et al., 2017). 

The complete configuration employing both d(y) statistics and d(y)-based θ estimates proved to 

be the most complex based on the results obtained in this study. Thus, this method produces the 

highest complexity of the pattern structures and shows maximum responsiveness to the features of 

the underlying data. The comparison between τ() and κ() measures further increases, as τ() yields 

a stable pattern while κ() increases the sensitivity to local details (Yan et al., 2017). However, as 

the above analysis indicated, linear similarity measures, although fewer in computation, have their 

own merits in terms of computational simplicity and straightforward interpretation and hence can 

be applied where computation complexity is not essential (Liu et al., 2016). 

The comparisons of the linear and non-linear methods disclose that the latter provide higher 

accuracy in comparison with the linear ones used for describing intensive physiological 

interactions. However, linear measures are useful because they are easy to interpret and compute, 

which can be beneficial in continuous assessments of datasets stocking (Peng et al., 2022). The 

choice of fusion statistics is also crucial; although y-based fusion has a straightforward relation to 

the actual measure and does not require the complexity of d(y), d(y)-based fusion deals with the 

considered hidden data problem and outliers, pointing to simplicity-robustness trade-offs (Hu et 

al., 2021). 

For practical applications, these findings suggest different approaches based on specific needs. 

Complex vital sign monitoring scenarios would benefit most from non-linear similarity measures 

combined with d(y) fusion statistics and OGK estimation. Routine monitoring might be better 

served by linear similarity measures with y-based fusion statistics and median estimation. Research 

applications might require implementing multiple approaches to compare results and select the 

most appropriate method based on specific objectives. The collective analysis of these results 

underscores the importance of careful method selection in vital signs data fusion. The choice of 

approach can significantly impact the quality and utility of the fused data, making this 

understanding crucial for both clinical applications and research purposes. As we continue to 

advance in this field, these insights will prove valuable in developing more refined and effective 

fusion techniques for vital signs monitoring and analysis. 

Conclusion 

The study reveals fascinating proof that the choice of similarity measures and fusion statistics 

directly determines the effectiveness of vital signs data fusion. The results show that when applied 

to raw vital signs data, nonlinear similarity measures (κ and τ) perform exceptionally well. Also, 

on the other hand, the linear similarity measure (ρ) produces exceptionally low MSFE values of 

when used with derived statistics. These results demonstrate that no single strategy consistently 

performs better than others in every situation, highlighting the significance of choosing a 

methodology that is appropriate for the given environment. 

Generally, whiles it is different to provide a simplistic view of the impact assessment with use of 

fusion error regardless of nature of similarity measures, it is pretty easy to achieve that with the 

grand absence statistic  R y . This is because the variation in fusion error values across the 

similarity measures for the four combinations (y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) exhibits 

inconsistencies. These inconsistencies may suggest that impact assessment should not only be 

based on the error incurred in generating a composite vital sign from the multivariate vital sign 

data since there may be other hidden factors that may have contributed to such variation.   

Thus, there should be another statistic to help calibrate how the absence of a given vital sign affects 

the operation of the remaining since they work in tandem (collectively) to determine the health of 
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an individual at any given time.  Obviously, such statistics will deliver great benefits in several 

ways, for example, directing innovative methods for development of devices for detection of 

malfunctioning organs, effective design of clinical test for assessment of diseases, wholistic health 

monitoring via composite deterioration detection, automated problematic vital organ identification 

and automated self-healing vital organs device design.  One practical disease area where this 

innovation can be of great benefit is the detection and management of diabetes, which is based on 

only fast blood glucose without its association with vital signs. 

The overall effect of controlling unseen data issues on the hidden one-dimensional data underlying 

multivariate vital sign data via fusion weights, and statistics based on the choice of similarity 

measure is crucial in understanding the variability in the operation mechanism of the entire vital 

signs.  This makes the path of an absence statistic for given vital sign to provide a better roadmap 

for assessing how remaining vital signs can stand in for the entire operation of the ecosystem in 

the absence of the vital sign in question. This in a way allows a non-trivial approach for checking 

implication of similarity measures and fusion statistics as well as the fusion method on handling 

public health data in their ability to offer automatic controls for unseen data issues which may be 

inevitable.  With the above observation, the potential flexibility of the fusion approach to public 

health problems becomes clearly visible. 
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