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ABSTRACT

This study investigates the impact of different similarity measures and fusion
statistics on vital signs data fusion, comparing the performance of linear and
nonlinear methodologies. We compared kappa (k) and tau (1) as nonlinear
measures against Pearson correlation (p) as linear measures, with different
statistical approaches (mean, median, and Orthogonalized Gnanadesikan-
Kettenring (OGK)). Performance was assessed using grand mean absence
statistics (R) across four competing models with different combinations of
original observations (y) and transformed data (d(y)) for parameter estimation
(0) and fusion statistics (g(y)). The results demonstrate that nonlinear measures
consistently outperform linear measures, with x providing higher R estimates
than t across all statistical approaches. For nonlinear measures, using original
observations for parameter estimation and transformed data for fusion statistics
consistently yielded superior results. Linear measures showed more variability
in performance depending on the specific measure and statistical approach
used. The robust statistics (median and OGK) generally provided better
performance than mean statistics, likely due to their resistance to outliers. This
methodology offers significant practical utility for public health applications,
including detection of malfunctioning organs, design of clinical tests,
comprehensive health monitoring, and automated problematic vital organ
identification. The approach demonstrates particular promise for conditions
like diabetes, where current diagnostic methods rely on isolated measurements
rather than integrated vital sign assessment.

Introduction
Physiological vital

signs play a crucial role in emergency health and have become an integral part

of healthcare research. Medical research exclusively focuses on vital signs fusion because it helps
in improving patient monitoring and identifying clinical deterioration early. The health condition
of a patient becomes evident through measurements of heart rate along with respiratory rate, blood
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pressure, body temperature, and other vital signs. Various data fusion techniques enable the
integration of vital signs parameters which elevate health assessment accuracy and reliability for
faster interventions and superior patient results (Charlton et al., 2016; Sun et al., 2018). Recent
research indicates that optimization of data fusion requires proper implementation of similarity
measures and fusion statistics. The extraction and optimization of vital sign information from
various data sources become more effective when healthcare professionals apply Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks (Yang et al., 2021;
Liu et al., 2019).

These techniques not only increase the accuracy of vital sign monitoring but also make it easier to
incorporate extra contextual data, like patient activity and ambient conditions, which can enhance
the monitoring systems' predictive power (Yang et al., 2021). The quality standards of vital sign
information determine how well clinical decision support systems operate. The quality of vital sign
information including accuracy and completeness and timeliness influences both the generation of
valid triage scores and clinical choice solutions (Skyttberg et al., 2016). Robust data fusion
methods allow healthcare providers to enhance the quality of their patient care data while handling
missing data situations (Rossum et al., 2023).

The methods for similarity measure along with fusion criteria demonstrate substantial influence
on vital signs data fusion which impacts both clinical operational aspects and the technical phase
of processing. To improve patient outcomes and advance the area of medical informatics, it will
be crucial to comprehend and optimize these characteristics as healthcare continues to shift
towards more data-driven approaches (Sadasivuni et al., 2021).

Wang et al. (2021) developed the basic concept for composite similarity measurement by
combining several features to enhance fusion precision. Multi-feature approaches in their research
achieved outstanding outcomes which surpassed traditional single-feature methods. Ofori et al
(2024) developed a fusion method using composite spatial similarity measure modelling. Their
framework was built on mixture random variate using information provided by the
interrelationships among variables. That allowed the latent unidimensional data to be generated as
a weighted linear combination of the multivariate data, providing an easy way to model the weights
in terms of desirable data features of interest.

The current paper describes a new empirical method to evaluate how similarity measures together
with fusion statistics influence vital signs data fusion. This method was developed solely for
composite similarity assessments in physiological vital signs fusion operations. The algorithm
utilizes built-in relationships between vital signs together with characteristics and measurement
uncertainties.

Materials and Methods

Data

The data example here is based on the traumatic vital sign data employed by Mensah et. al. (2024).
The data was sourced from the Komfo Anokye Teaching Hospital (KTH). We used a de-identified
subset characterized by variables RR, HR, SBP, DBP, TEMP, SPO2, RBS, and MAP, of dimension
4064 x 8.

Model

Physiological vital sign data fusion focuses on having single random variable for p corrected set
of variables generated from the same source so that a single model can be developed instead of
multiple dependent models. Given p random variables with interrelationships say, Y,,Y,,...,¥,, a

typical data fusion model according to Ofori et al., (2024), assumes the form
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yuzzeijg(yij) (1)

j=1
q

for fusion weights 6, and fusion statistics ¢ (yij ), where z 6; =1 for distributional validity of the
j=1

fused variable y. The choice of & and g (yij ) are crucial in data fusion as each comes with its

impact on the resultant one-dimensional data pattern. It is thus better to explore varied types
specifications spanning linear and non-linear similarity measure-based statistics for # and fusion
statistics with automatic self-controlled and non-controlled data issues to assess their impact on
data fusion. We consider the following similarity measure functions for estimating

k(a,a,,a5,0,b,,b,,8) =k, (a,,b,5)+k, (a,,b,,5)+k; (ay,b;,5), (2
i (3,,6) = of exp(-b757)

K, (a,.b,,6) =0 [ V56 EJexp(—\E&]

b, 32 b,
k3(a3,b3,5):a32(1+ ﬁd]exp(_ﬁd],
b3 b3
a,,8,,8,,0,0,,0, >0
v(a,,a,,a,,b,b,,0,,8)=1,(a,,0,6)+7,(a,,b,,6)+7;(a,,b;,5), (3)

)+
7 (a,8,b,6)=0; exp[ [ j}
7,(a,,b,b,,6) =0 exp( [szj (1 cos(zﬂg)D

ks (a;,b,,b,,8) =0 [ bej ,

where 6 =0 (y,, .)— ‘yl Y; ‘ V is an nxn matrix with entries computed using

1 ify, =y,
v“.:{ ity =y,

0 otherwise
and

plo) 2D
>(v,-9;)

i=1

(4)

The actual empirical computation of &, based on (2) and (3) following Ofori et al. (2024) considers

the mean, median, and Orthogonalized Gnanadesikan Ketterning (OGK) (Maronna et al., 2019,
Mensah et al., 2022) defined as

1 n
911:Ezk(ai’avasvbvbzibs’é‘ll)v 519 :5(y111Y1g—1) (5)
g=1
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By (5), a corresponding OGK 611 is computed as

_Jzn;Hljv(zg“) 0 _i

911_ 1 Lo = - (6)

n

ZV(Z%)

=

V(Zg“)z[l_-rz(zeu ’d)T I(‘Zm‘sd)’ Tz(zeu ’d)zzél (7)

where b =4.5, 1, and &, give the median and absolute deviation (MAD) of & respectively.
A corresponding estimate of € suing (4) is computed as

1 m
0, Zagsr(gwnwgw) (8)

Choice of statistics for 6 and g(y)

We consider the choice of potential data and statistics for computing 6 and g(y) respectively, as
their choice can influence the resultant data pattern both positively and negatively. Importantly,
both have the potential for handling hidden data issues that may affect model building at the
variable level. As such, it must be controlled automatically to avoid unnecessary drastic effects in
the combined form. In particular, we consider the observation, y, and its feature counterpart, d(y)

so that g(y) can be set as g(y)=yand g(y)=d(y). With this 6 can be computed using y and

d(y). Thus, it is easy to see the possible fusion models that can be generated from the possible
combinations of the resulting s based on the three similarity measures (2), (3) and (4) and g(y)s.
In what follows, we provide detail on the derivation of d(y) statistics. Moments of random variables
provide viable sources of features for handling hidden data issues such as extreme, repeated values
based on their natural function of correct weighting information. Let y generate probability density
function f(y). Then, its t moment about the origin is computed as

E[Y*]=[y'f(y)dy ©)
Obviously, the data for computing E [Yk] has the form y'f(y). Thus, this can be viewed as a

feature of y under the probability density space since there is a direct link with the y in terms of
recovery (Mensah et al., 2022). Based on above information, we set d(y) as

d(y) =~y f(y). (10)

The underlying probability density f{(y) computed using the kernel density estimation implemented
in R (Scott, 2015, Silverman, 1986). Tablel provides a comprehensive summary of possible
models that results from the above data for computation of § and statistics for use as fusion statistic,
g).
Table 1: Candidate Competing Models
Data for 6 and statistics for g(y)
Similarity Measure 0 a(y)

K y,dy) y dy)
T Y, dy) v dy)
S, y,dy) y dy)
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The computation of estimates for parameters a,,a,,a,,b,,b,,b, follow Ofori et al., (2024).
b =d(y), b, =d(y)
b, =m, —m,, m, =max(d(y,).d(y,).....d(¥,))
m, =min(d(y,),d(y,),....d(y,))

a=y1), a=y2),a=r3), r= d(y)

m,

where we define (1), 7(2),...,7(n) are the order statistics of 7, and d(y) and d(y) represent
the mean and median of d(Yy) respectively.

We outline the channels for automatic control of data issues, key aspects of the similarity measures
bring the novelty of specifications here. Typical automatic control of data issues functionality the
similarity measures are captured in ¢ for (2) and (3) and u for (4) while in the case of p, it is

induced in the differences between competing observations (yi -Y; ) Thus, all levels of point-

auto-relationships are captured with high weight for near points and low weights for far ones.
Finally, the usage of d(y) as input data for & and p ensures the multiple automatic control of data

issues iterated in this paper. It becomes straightforward to appreciate the levels of automatic
controls that the above data combinations offer in fusion. For example, (), y) with any method for
computing 6 say mean, median and OGK will generate the least number of automatic controls
based on any similarity measure.

Vital sign absence relevance statistics
We analyze the impact of similarity measure and choice of fusion statistics via vital sign relevance

in ¥ based on measures. Consider the recovery model for g (y i ) obtained by solving (1)

P 6,
9(y)=60" -2 4,9(%), 4=
1=2

H_Ij (11)

q
If we let M (yj ) = z&j,g (y,), then by (11), it can be seen that the statistic M (y; )
1=2

Provides insight into how much other vital sign variables contribute towards the recovery of
variable ;. Thus, source for an assessment to quantify how much the absence of y; to the

generation of Y if all variables operate together. Define R ( Y; ) as the mean weighted

contribution of all other variables due to the absence of y;,

Rwﬂrﬁé%@mx (12)

where N denotes the total number of observations in all variables without y,. A grand statistic

based on (12) can be computed and used to conduct impact analysis of the choice of data for
computing 6 as well as fusion statistic.
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Performance evaluation

The quality of data recovery methods can be assessed as in the usual model fitting performance
evaluations by considering the recovered data as the fitted and comparing it with the truth. With
this view the usual measures of model fit becomes applicable and useful within the data fusion
framework. In some cases, statistical measure of fit may not fully satisfy model evaluation
purposes, thus can be complicated with some relative efficiency measures. For the assessment
here, we define in addition to measures of fit, we device some relative efficiency measure. The
fusion data recovery error statistics considered are the Root Mean Squared recovery Error
(RMSRE), Root Mean Absolute Recovery Error (RMARE) and Root Standard Mean Absolute
Fusion Error (RSMAFE) defined for true data y and its recovered counterpart, § as follows.

RMSFE =
MAFE =

RSMAFE =

In terms of recovery efficiency, we define a statistics of the form

7 =[¥j (13)
Yi

and

7= (Z yijxloO% (14)

i=1
Results and Discussion
The study evaluated various combinations of fusion statistics and similarity measures to
understand their effects on vital signs data fusion by changing weight parameters (0). The
evaluation produced essential results that emerged from different methodological approaches. The
empirical values of spatial covariance parameters (Table 2) show significant variation across the
eight vital sign variables (y: through ys). Parameter a: ranges from 0.2599 to 0.4897, with ys
showing the highest value (0.4897) and ys the lowest (0.2599), indicating varying levels of short-
range spatial dependency.
Table 2: Empirical values of spatial covariance parameters

Empirical Estimates

Parameter Y1 Y2 Y3 Ys Ys Ye Y7 Ys
a, 04426 0.3291 0.3217 0.3139 0.2599 0.4897 0.2923 0.3192
a, 0.4885 0.3538 0.3417 0.3526 0.2557 0.4690 0.2851 0.3418
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as 0.8125 0.5315 0.5619 0.5509 3.2094 1.6008 1.2660 0.5493
b, 1.8416 1.6428 1.7644 1.7607 12.3985 3.3410 4.3378 1.7292
b, 1.8230 1.6428 1.7644 1.7607 1.8009 3.3410 4.3378 1.7292
bs 1.8230 1.6428 1.7644 1.7607 1.8009 2.9412 4.3378 1.7292

Source: Authors

The empirical values of spatial covariance parameters show significant variation across the eight
vital sign variables (y: through yz). Parameter a: ranges from 0.2599 to 0.4897, with ys showing
the highest value (0.4897) and ys the lowest (0.2599), indicating varying levels of short-range
spatial dependency. The values for parameter a. follow comparable patterns while showing
somewhat higher numbers from 0.2557 to 0.4885. Parameter as exhibits significant variability
through its measured values that extend from 0.5315 to 3.2094 where a high value occurs
specifically in ys (3.2094). Data shows that the bi, b2, bs parameters demonstrate consistent
tendencies within each variable while displaying significant differences between variables and b:
for ys reaches exceptionally high levels at 12.3985. The b-values of ys and y- stand out from all
other variables’ b-values. All variables keep their b-values stable throughout the three-
measurement points bi, bz, ba.

In terms of performance of nonlinear similarity measures, throughout various weight calculations
k() and t() showed identical patterns of performance in vital sign fusion analyses. The performance

of nonlinear measures is generally consistent in the grand mean of all absence statistics ( ﬁ(y)
across the two measures: kappa (k()) and tau (t()) using mean, median, and OGK statistics for all
the competing models. Higher §( y) values indicate a greater impact on vital sign fusion in terms

of efficient calibration of vital signs relevance to a latent underlying one-dimensional pattern that
could be viewed as degree of health, if it is of interest to measure health based the joint operation

of vital signs. The fusion performance for the mean (6_? ) with k() measure (Table 3) shows that
using the original observation (y) as data for computing 6 and d(y) as fusion statistic (g(y)) gives
an overall higher §(y) (4.0229) among the four possible competing models. This result is
consistent with using t() measure. It also indicates an overall ﬁ( y) of 3.5837 for using y as data
for computing 6 and d(y) for fusion statistics. Also, using d(y) for both 6 and g(y) has an ﬁ( y) of

2.3312. This consistency is also seen in all the possible competing models across the median (é)

(Table 4) and OGK (6, ) (Table 5). This is followed by the use of d(y) as data to compute both

0 and g(y) (2.2792). It can be seen that data specific combinations (y, d(y)), (d(y), y) and (d(y),
d(y)) always yield better grand mean absence value. This performance is attributed to the ability
to handle within vital sign specific data issues such as extreme values, repeated values, point-wise
interrelationships.

According to Table 3 (mean-based weight) for k() similarity measure, using raw data (y) for both
0 and g(y) yields the lowest MSFE (0.0358). Also, feature-based approaches d(y) shows higher
error rates when used for 8 as MSFE increases to 0.1093. Again, d(y) produces an MSFE of 0.0644
when used for g(y).
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Table 3: «(), 7 () : Fusion performance for & (Mean)
Data for 6 and statistics for g(y)

Measure data for 0 gly) MSFE SMAFFE M AF E R(Y)

<0 y y 0.0358 0.1382 23353 -0.75026
y diy) 00644 02326 0.8750 4.02293
d(y) y 0.1093  0.1620 13975 20.15307
d(y) dy) 00667 02390 0.8750 2.27924

0 y y 0.0350 0.1367 13627 20.52309
y dy) 00644 02329 0.8750 3.58370
d(y) y 0.1095  0.1616 15796 20.15842
d(y) dy) 00906 02786 1.0180 233124

Source: Authors

Table 4: «(), t () : Fusion performance for § (Median)

Data for 0 and statistics for g(y)

Measure data for 0 g(y) M SF E MAF E SM AF E ﬁ( y)

Eg y y 0.0350 15323  8.5066 427743707
y diy) 00646 02330 08750 7420277938
d(y) y 0.1082  0.1624 18011 -0.15381
d(y) dy) 00667 02391 0875 225383

' 8 y y 0.0341  0.1360 14820 -0.63461
y diy) 00646 02335 08750 3.93213
d(y) y 0.1087  0.1619 14263 -0.15955
d(y) dy) 00910 02795  1.0198 2.31745

Source: Authors

According to Table 4 (median-based weights), both similarity measures show improved
performance compared to mean-based weights. The k() measure with raw data achieves MSFE of
0.0350. The t() measure shows further improvement with MSFE of 0.0341. Also, the feature-based
fusion maintains higher error rates but shows more stability. Meanwhile, notable difference exists
in R(y) values, with extreme values for some combinations. The OGK-based weights (Table 5)
show performance metrics that closely mirror median-based weights. There are slight
improvements in stability across different combinations with more consistent R(y) values
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compared to other weight types. It really maintains the pattern of better performance with the raw
data fusion.
Table 5: «(), T () : Fusion performance information for Oock

Data for 0 and statistics for g(y)

Measure data for 0 (y) M SF E MAF E SM AF E R (y)

Eg y y 0.0350 01376 15323 407738607
y diy) 00646 02330  0.8750 7410269113
d(y) y 0.1082 01625 18011 L0.15337
d(y) dy) 00916 02802  1.0212 2.25355

! 8 y v 0.0341 01360  1.6027 -0.63334
y diy) 00645 02334 08750 3.92488
d(y) y 0.1086  0.1619 14882 20.15902
d(y) diy)  0.091 02795  1.0199 2.31749

Source: Authors
The performance assessment of linear similarity measure on the other hand shows differences in

ﬁ(y) across the two measures considered: Pearson (p()) and Euclidean (S;) using the mean,

median and, the OGK for all the possible competing models. Fusion performance for & (Table 5)
with p() measure indicates that using the original observations in computing both 6 and g(y)
provides the best ﬁ( y) of 3.1907. This is followed by the use of d(y) for both 6 and g(y) (0.1307).
The story is different from fusion performance with the median (Table 7) and the OGK (Table 8).
The median shows that the usage of d(y) for 8 and y for computing g(y) provides a better estimate
of I§( y) (0.2559). Meanwhile, the fusion performance with the OGK under the Pearson measure

proves that the usage of d(y) for calculating both 0 and g(y) is the best I§( y) estimate compared

with all the competing models. The performance of linear similarity measures (Tables 6-8),
throughout various weight calculations showed identical patterns of performance in vital sign
fusion analyses. The mean-based weight showed significantly different performance patterns from
nonlinear measures. Also, the feature-based fusion shows remarkably low error rates with MSFE
0f 0.0056 for (y, d(y)) combination,

Table 6: Linear similarity measure: Fusion performance for 6 with Y (Mean)

Data for 0 and statistics for g(y)

Measure data for 0 gly) MSFE MAFE SMAFE R (y)

p() y y 0.8564 0.1612 0.1612 3.19073
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y d(y) 0.0056 0.0269 0.0269 -0.30289
d(y) y  0.1617 0.0572 0.0572 0.03966
d(y) d(y) 0.0023 0.0284 0.0284 0.13072

Source: Authors

MSFE 0f 0.0023 for (d(y), d(y)) combination. The raw data fusion shows higher error rates (MSFE
0.8564) with R(y) values that are more stable and closer to zero. Likewise, the median-based
weight (Table 7) exhibited a similar pattern to that of the mean-based weight but with slight
improvements. Its feature-based fusion maintains excellent performance with MSFE of 0.0056 for
(y, d(y)), MSFE of 0.0020 for (d(y), d(y)) and a more consistent R(y) values across all
combinations. The OGK-based weight (Table 8) outperforms both the mean and median weight
for linear measures. It shows the most stable performance across different combinations. The
feature-based fusion continues to show optimal performance with R(y) values indicating a better
handling of outliers and extreme observations.

Table 7: Linear similarity measure: Fusion performance for 6 with ¥ (Median)

Data for 0 and statistics for g(y)

Measure data for 0 g(y) M SFE MAF E SMAFE R (y)

p() y y 0.8537 0.1589 0.1589 -0.25440
y d(y) 0.0056 0.0261 0.0261 -0.01928
d(y) y 0.1608 0.0502 0.0502 0.25593
d(y) d(y) 0.0020 0.0246 0.0246 0.01219

Source: Authors

Table 8: Linear similarity measures: Fusion performance for yock
Data for 0 and statistics for g(y)

Measure data for 0 g(y) M SF E MAFE SM AF E R (y)

00 y y 0.8541 0.1587 0.1587 2123668
y d(y) 0.0056 0.0260 0.026 -0.51719
d(y) y 0.1611 0.0527 0.0527 -0.22091
d(y) d(y) 0.0021 0.0252 0.0252 0.33651

Source: Authors
Both similarity measures reported Minimal Mean Square Fusion Error values from Tables 3-5
especially when one uses the raw data (y) for weight calculation and fusion statistics conditions.
The MSFE values remained within the range of 0.0341 to 0.0358 showing effective fusion
accuracy. The use of derived statistics d(y) resulted in significant increases in error measures when
utilized for this specific similarity measures. Raw data therefore appears more appropriate for these
measures. The error pattern analysis shows that the Standardized Mean Absolute Fusion Error
(SMAFE) revealed specific patterns among the different tested combinations. The SMAFE
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measurement levels remained higher within both raw data-based fusion statistics and all weight
calculation methods for nonlinear evaluation entities. Standardization influences fusion outcomes
to a stronger extent during nonlinear data processing that uses raw data measurements.

Figures 1-3 show the absence relevance statistics using the Pearson, (), and 1() measures. The
Pearson measure (Figure 1) shows the most consistent patterns across variables with a clear
differentiation between different fusion approaches. It also shows stable behavior across all eight
variables. The k() exhibits higher variability in R(y) values with some extreme values indicating
potential instability. It also reveals clear differences between raw and feature-based fusion. Lastly,
the t() measures shows average stability between Pearson and k measures with more consistent
patterns than k() but less stable than Pearson. It reveals a clear impact of different fusion
approaches
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Figure 1: Nature of R(yj) statistics based on Pearson similarity measure. From left to right are
plots for (v, y), (v, d(y)), (d(y), y) and (d(y), d(y)) respectively.
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Figure 2: Nature of R(yj) statistics for k() similarity measure. From left to right are plots for
(> ¥), (¥, d(¥)), (d(y), y) and (d(y), d(y)) respectively.
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Figure 3: Nature R(yj) statistics for t() similarity measure. From left to right are plots for
(¥, ¥), (¥, d(y)), (d(y), y) and (d(y), d(y)) respectively.
The visual representations of the R(y) statistics in Figures 1-3 demonstrate the influence that the
absence of individual vital signs has on fusion processes. Different vital signs exhibit different
degrees of sensitivity according to the patterns while some vital signs demonstrate stronger
responses than others. The nonlinear measures exhibited better stability for R(y) patterns than the
linear measure when working with derived statistics.

Figures 4-6 present visual evidence which demonstrates that «() and () show uniform performance
patterns during different weight calculation procedures. The case is somehow different from the
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evidence in Figure 7. These plots show minimal discrepancy between the two measures and stable
fusion patterns, especially when raw data is used.
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Figure 4: Pattern of § using k() — black and t() — Red with 0. From left to right are plots for
(¥, ¥), (v, d(y)), (d(y), y) and (d(y), d(y)) respectively
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Figure 5: Pattern of § using k() — black and () — Red with 0. From left to right are plots for
(¥, ¥), (¥, d(y)), (d(y), y) and (d(y), d(y)) respectively
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Figure 7: Pattern of § using p(). From left to right are plots for (y, ¥), (v, d(»)), (d(v), y) and

(d(y), d(y)) respectively.
(v,), (v,d(y)), (d(y), y) and (d(y), d(y)) respectively. Comparing the two non-linear measures,

it is obvious that the k() provides higher estimates of §(y) than t() across mean, median, and

OGK statistics. The choice between mean, median, and OGK for non-linear measures is also
apparent. The estimates ﬁ( y) from the mean are lower compared to the median and the OGK.
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This might be as a result of the mean’s inability to deal with extreme observations and outliers.
Also, using the original observations for estimating 6 and d(y) for the fusion statistic yields higher

results in F_{(y). The linear similarity measure on the other hand is very diverse. The choice of

fusion performance is dependent on the type of linear measure, the choice of statistic (mean,
median, and OGK) as well as the competing model. Fusion performance with mean under the
Pearson measure indicates that the use of y for computing both 6 and g(y) is the ideal competing

model to provide significant ﬁ( y) estimates. In terms of the OGK, it is better to consider the d(y),

d(y) competing models. Likewise, the use of d(y) for 6 and y for fusion statistics provides better
ﬁ( y) estimates with the median. Lastly, the choice of Euclidean measure provides two competing

models (y, d(y)) and (d(y), d(y)) to provide significant estimates of ﬁ(y)irrespective of the

statistic used (mean, median, or OGK). This implies that the kind of data preparation and the
particular needs of the fusion task should have an impact on the choice of similarity measure. The
parameter estimation results in Table 2 demonstrate distinctive values for each vital sign which
demonstrates that the fusion mechanism adjusts to the respective features of individual vital sign
variables. The ability of this system to adjust through different physiological measurements serves
as a vital component for achieving accuracy in fusion processes. The current findings suggest that
the choice of similarity measure and fusion statistics should be carefully considered based on the
specific characteristics of the vital sign data and the intended application. The results indicate that
no single approach consistently outperforms the others across all scenarios, highlighting the
importance of context-specific selection of fusion methods.

Discussion

Similarity measures and fusion statistics are important in vital signs data fusion to determine the
degree of success in the integration and interpretation of physiological fused data. The vital sign
specific R(y) statistics values can be viewed as a path for evaluating the effectiveness of a given
similarity measure in calibrating the impact a vital sign’s absence creates in the ecosystem span
by the vital signs. Figures 1-4 show the absence relevance statistics path for the eight vital signs
using the (), and 1() measures etc. The visible dynamic differences in pattern exhibited by vital
sign specific absence statistics across the similarity measures and four fusion data configurations
(y, d(y)), (d(y), d(y), d(y)) is a key indicator of flexibility and innovation potential that the new
area of data fusion method can offer to consolidated handling of public health issues.

The selection of similarity measures especially the non-linear ones has been proven to improve the
fusion process by capturing relatively complex relationships that exists in physiological data. For
instance, the application of the 1() measure helped to make a transition in fused visuals more
natural, and the median estimation approach helps to retain outlier details which are mentioned by
researchers in earlier studies (Dziorny et al., 2022; Gao et al., 2018). Among all the estimation
methods, OGK becomes the most suitable approach, stabilizing both direction changes and outliers
as key to maintaining effective clinical care and patient outcomes in the case of displaying
significant big data outliers (Jesus & Silva, 2022).

Furthermore, the d(y) fusion statistics which form part of the data fusion framework was another
improvement in the data fusion process. Besides increasing the representation of vital-sign
relationships, this approach also proves consistent in optimizing the management of hidden data
problems. Natural interactions happen at the physiological level and traditional statistics are not
sensitive enough to capture these differences; that is why d(y) statistics were developed (Zhang et
al., 2015). The use of d(y) statistics along with y-based 6 shows that while providing a good
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balance between signal features and noise reduction, the type of method used impacts the
effectiveness of data fusion (Habib et al., 2017).

The complete configuration employing both d(y) statistics and d(y)-based 0 estimates proved to
be the most complex based on the results obtained in this study. Thus, this method produces the
highest complexity of the pattern structures and shows maximum responsiveness to the features of
the underlying data. The comparison between t() and k() measures further increases, as t() yields
a stable pattern while k() increases the sensitivity to local details (Yan et al., 2017). However, as
the above analysis indicated, linear similarity measures, although fewer in computation, have their
own merits in terms of computational simplicity and straightforward interpretation and hence can
be applied where computation complexity is not essential (Liu et al., 2016).

The comparisons of the linear and non-linear methods disclose that the latter provide higher
accuracy in comparison with the linear ones used for describing intensive physiological
interactions. However, linear measures are useful because they are easy to interpret and compute,
which can be beneficial in continuous assessments of datasets stocking (Peng et al., 2022). The
choice of fusion statistics is also crucial; although y-based fusion has a straightforward relation to
the actual measure and does not require the complexity of d(y), d(y)-based fusion deals with the
considered hidden data problem and outliers, pointing to simplicity-robustness trade-offs (Hu et
al., 2021).

For practical applications, these findings suggest different approaches based on specific needs.
Complex vital sign monitoring scenarios would benefit most from non-linear similarity measures
combined with d(y) fusion statistics and OGK estimation. Routine monitoring might be better
served by linear similarity measures with y-based fusion statistics and median estimation. Research
applications might require implementing multiple approaches to compare results and select the
most appropriate method based on specific objectives. The collective analysis of these results
underscores the importance of careful method selection in vital signs data fusion. The choice of
approach can significantly impact the quality and utility of the fused data, making this
understanding crucial for both clinical applications and research purposes. As we continue to
advance in this field, these insights will prove valuable in developing more refined and effective
fusion techniques for vital signs monitoring and analysis.

Conclusion

The study reveals fascinating proof that the choice of similarity measures and fusion statistics
directly determines the effectiveness of vital signs data fusion. The results show that when applied
to raw vital signs data, nonlinear similarity measures (k and t) perform exceptionally well. Also,
on the other hand, the linear similarity measure (p) produces exceptionally low MSFE values of
when used with derived statistics. These results demonstrate that no single strategy consistently
performs better than others in every situation, highlighting the significance of choosing a
methodology that is appropriate for the given environment.

Generally, whiles it is different to provide a simplistic view of the impact assessment with use of
fusion error regardless of nature of similarity measures, it is pretty easy to achieve that with the

grand absence statistic §(y). This is because the variation in fusion error values across the

similarity measures for the four combinations (y, y), (y, d(y)), (d(y), y) and (d(y), d(y)) exhibits
inconsistencies. These inconsistencies may suggest that impact assessment should not only be
based on the error incurred in generating a composite vital sign from the multivariate vital sign
data since there may be other hidden factors that may have contributed to such variation.

Thus, there should be another statistic to help calibrate how the absence of a given vital sign affects
the operation of the remaining since they work in tandem (collectively) to determine the health of
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an individual at any given time. Obviously, such statistics will deliver great benefits in several

ways, for example, directing innovative methods for development of devices for detection of

malfunctioning organs, effective design of clinical test for assessment of diseases, wholistic health

monitoring via composite deterioration detection, automated problematic vital organ identification

and automated self-healing vital organs device design. One practical disease area where this

innovation can be of great benefit is the detection and management of diabetes, which is based on

only fast blood glucose without its association with vital signs.

The overall effect of controlling unseen data issues on the hidden one-dimensional data underlying

multivariate vital sign data via fusion weights, and statistics based on the choice of similarity

measure is crucial in understanding the variability in the operation mechanism of the entire vital

signs. This makes the path of an absence statistic for given vital sign to provide a better roadmap

for assessing how remaining vital signs can stand in for the entire operation of the ecosystem in

the absence of the vital sign in question. This in a way allows a non-trivial approach for checking

implication of similarity measures and fusion statistics as well as the fusion method on handling

public health data in their ability to offer automatic controls for unseen data issues which may be

inevitable. With the above observation, the potential flexibility of the fusion approach to public

health problems becomes clearly visible.
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