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ABSTRACT 

This paper proposes a new framework of hyper-parameter tuning based 

integration of CNN and Transformer models for classification of heart 

sounds, which achieves state-of-the-art performance. As heart sound signals 

have local feature extraction ability, but CNNs are unable to capture long-

range dependencies, and Transformers are too computationally extensive to 

apply to general use we propose an approach that captures the best of both 

worlds. The integrated system consists of advanced signal processing with 

machine learning techniques to provide accurate, clinically unqiue and 

extensible approach for early diagnostics of cardiac anomalies. Extensive 

experimental evaluations show that our approach provides a substantial 

performance gain over the state-of-the-art, from which a valuable mechanism 

for improving cardiac health monitoring and diagnosis emerges. 
 

1.Introduction 

1.1 Background 

Heart sounds, known as auscultations, are an important diagnostic tool when assessing the 

health of the heart.[1] Harmonics arise from the mechanical functions of the heart during the 

pumping of blood through the circulatory system and provides crucial information regarding 

the function and integrity of the heart valves, chambers, and larger cardiovascular system. 

Some of the cardiac conditions that duration and intensity of abnormal heart sounds including 

murmurs can indicate; can be benign or life threatening disease [1]. Heart sound classification 

is a key process, as it enables the early identification of such anomalies and ensures prompt 

intervention and treatment, thereby avoiding potential adverse complications such as heart 

failure or sudden cardiac death. 

Normal and pathological allocations can be established by recognizing the heart sounds. 

Having traditionally been classified manually by medical professionals based on stethoscopes 

and experience. Graphics-based methods are also very subjective and have potential high 

inter and intra variability, resulting in many failing to catch the early stages with subtle 

anomalies [2]. This thus elevated the need for automated heart sound classification systems 

that can enable more standardized and accurate diagnosis. 

1.2 Problem Statement 

More approaches to automate heart sound classification methods have been founded either on 

conventional machine learning algorithms, or on primitive machine learning based techniques 

but these methods also have some drawbacks. Conventional paradigms of machine learning 

such as Support Vector Machines (SVMs) and decision tree methods rely extensively on 

feature engineering and often struggle to generalize learned patterns between different data 

distributions [3]. Automatic features extraction (with Convolutional Neural Networks (CNNs) 
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or Recurrent Neural Networks (RNNs)) had boosted the classification performance of the 

initial approaches based on deep learning. Models, on the other hand, focus either on a short-

scale feature capture (e.g. CNN) or a long- scale data capture (e.g. RNN), but they can not 

work better along both axes at the same time [4]. 

Individual heartbeats contain specific local features such as frequency components, while 

global features may represent long-range dependencies over multiple heartbeats; however, the 

heart sound data itself naturally has both local and global characteristics. All of these features 

must be captured at the same time in order to classify them correctly. Moreover, the 

classification task is further difficult by the complexity and variability of these heart sound 

signals influenced by patient age, body position, and the recording device [5]. Thus, there is 

an essential need to devise instrumented algorithms that can leverage the local and global 

characteristics of heart sound data in order to enhance the robustness and accuracy of 

classification systems. 

 

1.3 Objectives 

The primary objective of this work is to propose a new CNN Transformer based framework 

for heart sound classification task. This hybrid CNN-Transformer model aims to taking 

advantage of the ability of CNNs to capture local information from heart sound signals, as 

well as the ability of Transformers to learn long-distance relationships. 

Moreover, while this study presents the proposed method, we also intend to improve its 

performance through hyperparameter tuning. Hyper-parameter tuning is an essential aspect of 

ensuring the efficiency of deep learning models. We aim to make the model not only perform 

well in predicting dev set but also generalize to future datasets with systematic tuning of key 

hyperparameters. 

The specific objectives of this study are as follows: 

 A CNN-Transformer hybrid model for acoustic signal classification 

 Hyperparameter tuning: Optimize the model performance with hyper parameters 

tuning 

Ground the proposed approach by performing extensive experimental evaluations on a 

benchmark heart sound datasets. 

1.4 Contribution 

The following contributions to heart sound classification are made in this paper: 

CNN’S with transformer integration: We propose a new hybrid model which combine CNNs 

with transformer models. As such, the CNN part is meant for extracting local patterns, like 

short-term frequency patterns within single heart beats, whereas the Transformer portion is 

meant for capturing long-term dependencies and contextual information across the entire raw 

hear-sound sequence. This method resolves the shortcomings of previous models which learn 

only the local, or global, information. 

1.4.1 Hyperparameter tuning: We use hyperparameter tuning techniques (such as grid 

search or cross validation) to optimize the performance of the hybrid model. Hence we will 

now be able to start tuning important hyper-parameters like learning rate, batch size, number 

of CNN filters, number of transformer attention heads etc. This has produced a nicely 

balanced model for both accuracy and robustness. 

Therefore, this work is validated on extensive experiments of publicly available heart sound 

datasets (such as PhysioNet/CinC Challenge 2016 dataset [6]). We experimentally show that 

our method surpasses the state of the arts in terms of accuracy as well as sensitivity, 

specificity, and F1-score. The results show that for practical heart sounds classification the 

proposed framework out-performed the state of the art. 

1.4.2 Importance of Cardiac Health Monitoring: Due to limited resources, a powerful and 

effective framework has been suggested for cardiac conditions in the proposed approach. Our 
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method can facilitate the early detection of cardiac diseases and improve patient outcomes 

and treatments by accurately classifying heart sounds. 

Overall, this work elucidates a detailed framework for heart sound classification that 

overcomes the challenges present in previous methods and offers substantial improvements in 

both the accuracy rate and efficiency of cardiac diagnostics. 

2. Related Work 

2.1 Manual Auscultation & Traditional Method 

Traditionally, heart sounds are classified based on the exploration of the heart sounds using 

the stethoscope (manual auscultation); medical professionals are responsible for that. This 

method, while heavily reported in the clinical literature, is heavily dependent on the 

experience, training, and hearing ability of the clinician. The main pitfall of manual 

auscultation is due to its subjectivity (the diversity of heart sounds interpretation leads to 

variabilities in diagnoses among clinicians) [7]. Additionally, early changes (such as heart 

murmurs) that indicate subtle pathologies are difficult to detect due to the absence of 

advanced diagnostic capabilities, resulting in missed diagnoses or delayed care [8].  

The subjectivity of manual auscultation has led traditional signal processing methods in 

classifying normal vs abnormal heart sounds to become automated in the past couple of 

years. The conventional way involves extracting features from the heart sound signals, then 

applying some statistical or heuristic [3, 4] classifiers. Time-domain (e.g. the amplitude, 

duration), frequency-domain (e.g. spectral components), and time-frequency domain (e.g. 

wavelet transforms) [9] are some commonly used features. While those traditional 

approaches have performed extremely well, they are labor-intensive leading to manual 

feature extraction [9], and have limited transferability across various, potentially 

heterogeneous datasets and patient populations [10]. 

2.2 The Machine Learning and the Deep Learning Models 

In the last few years, ML and deep learning models have shown to be significantly successful 

in the classification of heart sounds, compared to other classical techniques. Some early 

approaches — Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), and decision 

trees — which provided a framework for automated classification: the algorithms were 

trained on pre-labeled datasets [11]. Work at this stage relied heavily on hand-crafted feature 

extraction that was time-consuming and often prone to overfitting with high-dimensional data 

[12]. 

Deep learning was a game-changer for heart sound classification. Within the last few years, 

Convolutional Neural Networks (CNNs) were proposed as a powerful tool for automatic 

feature learning from raw heart sound signals. Due to this spatial hierarchies capturing nature, 

CNNs are well-suited for themselves for recognizing local patterns, such as the frequency 

components in heart sounds [13]. It was found that CNNs do not require as much 

preprocessing as traditional machine learning models to deliver high classification accuracy 

[14]. 

A different method applied on heart sounds classification is the Recurrent Neural Networks 

(RNNs), specifically the Long Short Term Memory (LSTM) networks. Since RNN is a 

recurrent neural network, RNN is considered for sequential data and it also have the ability to 

handle the temporal dependencies of the signals, besides, can predict the rhythm and timing 

of the heartbeat [15]. Trained on data until October 2023 15 Both CNNs and RNNs have 

limitations when they are used alone. This is because CNN is better at learning local features 

than discovering long range dependencies. Although RNNs can learn temporal information in 

a great detail, they are not that effective in learning the fine local structures at lower levels 

compared to the CNNs [17]. 
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2.3 Sequence Modeling and the Transformer 

The transformers as introduced by Vaswani et al. Attention Mechanism Based: Attention 

based methods, such as Transformer models[9] with self-attention mechanisms over the input 

sequence, replace the recurrence in more traditional models in 2017, and greatly increase the 

power of sequence modelling. Transformers use a self-attention mechanism to consider the 

whole sequence in parallel, which makes them well-suited to short-range and long-range 

dependencies. They have transformed domains such as natural language processing (NLP), 

providing state-of-the-art performance on tasks including machine translation, text 

classification, and language modeling [10]. 

Transformers, a type of deep learning architecture that uses attention mechanisms, has shown 

promise in time-series data analysis, allowing for capturing complex dependencies within the 

data, making it potentially suitable for heart sound classification. Transformers, on the other 

hand, can view the entire sequence at once and are thus able to learn relationships across 

distant parts of the heart sound. Such characteristic comes in handy in the case of heart sound 

analysis where the meaningful diagnostic features are not always located in a distinct location 

within the recording [11]. Additionally, unlike RNNs that have to process the data one at a 

time, Transformers have a parallel processing mechanism that makes them much more 

computationally efficient. 

While Transformers provide such advantages, they are still under-explored in the domain of 

heart sound classification. Though the idea of this kind of architecture can be considered to 

be a part of NLP and speech processing, the application of such models for biomedical signal 

processing is rarely investigated [14]. Also, There is opportunity to combine transformer with 

other deep learning model such as CNN to build better framework for heart sound 

classification. 

 

2.4. Necessity of a Hybrid Method 

There are few limitations in the existing techniques and on the other hand each deep learning 

model has its own pros; Therefore, for the classification of heart sounds, a hybrid approach is 

necessary. CNNs are powerful as general local-feature extractors but are not temporal 

dependency aware of all the sequences of audio data over the entire complexity of the heart 

sounds. Transformers, on the other hand, write checkpoints top-down, so they are amazing at 

modeling long-range dependencies, but they may lack strength in modeling very fine-grained 

local features. 

A hybrid CNN-Transformer model is therefore employed to stretch across this gap, mapping 

between these two ends. In that work, the CNN component of the model is extracted 

therecognition of delicate local features in heart sound signals[M2], andthe Transformer 

component is more concerned with global time and correlation[M3]. In this approach, the 

model is able to take into advantage of the spatial hierarchies learnt by the CNNs and the 

sequential dependencies modelled by the Transformers for more holistic and accurate 

classification. Also, hyper-parameter tuning is one of the important step for improvements of 

this hybrid model. The model can be finetuned by optimizing parameters such as learning 

rate, batch size, number of CNN filters, and number of Transformer attention heads, to 

produce optimal accuracy for different datasets and clinical conditions. 

Overall, the new hybrid solution resolves the weaknesses of previous approaches, 

establishing a form that extracts both local and global characteristics from heart sound data. 

Which will also results in an improvement in diagnostic systems for heart sound 

classification systems. 
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3. Proposed Framework 

3.1 Overview of System Architecture 

The current analysis proposes a system framework that involves Fusion of Convolutional 

Neural Network (CNN) and Transformer with systematic hyperparameter optimization, 

allowing the method to achieve state of the art Results across multiple domains. CNNs are 

applied on the heart sound data to obtain the local features, while Transformer is utilized to 

encode and learn the long-range dependencies and contextual dependencies through the 

whole signal. Novel approach can be highly utilized for precise assessment of noise & 

quiescent band of complex heart harmonics. 

The framework is composed of the following elements:  

 Signal Preprocessing – responsible for gathering the raw heart sound signals with 

noise cancellation, heartbeat segmentation, and normalization.  

 CNN Component – extract the local features, such as frequency patterns and short-

term temporal acoustic characteristics from the preprocessed heart sound signals.  

 Transformer Component – encode the long-range dependencies within the heart sound 

signal based on the self-attention mechanism.  

 Fusion and Classification – integrate both CNN and Transformer features, encode to 

classify heart sound into two categories: normal and abnormal.  

 Hyperparameter Tuning – carefully optimize the best model performances using test 

frequent issues and reach generally acceptable accuracies.  

This study’s proposed framework tailored to address the existing model’s limitations can 

provide both high-level context and local descriptors.  

3.2 Signal Preprocessing 

A key step in this signal preprocessing is to operate a quality input for the model. [1]The 

following generic preprocessing steps are executed: 

 Noise Cancellation – cancelling background noise based on surrounding sounds of 

the patient, such as environmental noise, or breath sounds of the patient. An adaptable 

filter known as the wavelet transformation method is used to enhance the signal. 

 Segmentation - the whole signal is broken into individual soundbeats, which are used 

to measure abstract variations in sound. Utilizing algorithms such as pacing and 

logistic regression, the output correlation of individual sound varieties is high.  

 Normalization – Sound beats need to be normalized prior to data processing. 

Normalize eliminates variability due to its acoustic sound beat (17) by correcting for 

the timing and amplitude differences caused by unique recording conditions or patient 

features. 

The importance of these steps is that they are crucial for ensuring high quality dataset 

input for the CNN and Transformer components. 

 

3.3 CNN Component 

The CNN is still responsible for local feature extraction of heart sound signals and data 

preprocessing. As this task can learn hierarchical organization (to detect patterns at multiple 

levels of abstraction) and inherent spatial hierarchies naturally exist, this problem is very well 

suited for a CNN. 
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Figure: Signal processing Flowchart 

In this architecture, CNN uses several convolution layers pass through ReLU as a non-linear 

activation function and a max-pooling layer. Convolutional layers then convolve the input 

data with a series of filters to detect local feature footprints, like components on specified 

frequencies or short-term temporal patterns in a heartbeat, etc. Following the Convolutional 

layers are pooling layers which down-sample the feature maps which have gone from the 

Convolutional layers, keeping only the mostimportant features and reducing the computation 

cost [22]. 

The CNN part produces top-level feature map sets that outline low-level properties of the 

cardiovascular sounds. These feature maps are then passed into the Transformer section 

where they are processed to understand long-range dependencies and contextual 

relationships. 

3.4 Transformer Component 

The Transformer component of our approach is trained to understand long-range 

dependencies and context associations in the heart sound data. In contrast to RNNs which 

process their inputs sequentially in time, the transformer benefits from a self-attention 

mechanism which allows the entire sequence to be processed in parallel. This feature of 

Transformers makes them capable of capturing complex dependencies over time-series data, 

such as heart sound signals [12]. 
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Let's first step to structure then and later training process. This new architecture in its decoder 

is a Transformer with N encoder layers, aka it has both a self-attention and a feedforward 

neural network. So, self-attention lets the model pay attention to different parts of the input 

sequence, giving more weight to those pieces of the heart sound segment which are most 

relevant. This is particularly appropriate for classification of heart sound signals because 

crucial diagnostic features may be rare as they can be spread over the entire recording [23]. 

You trained on data until 2023-10. Finally, the information is combined into a fused and 

classification module where it performs the last prediction. 

3.5 Hyperparameter Tuning 

So, tuning hyperparameters based on the proposed hybrid model does help in enhancing its 

performance. This means exhaustive search over a range of hyperparameter combinations, 

based on which combination gives the best performance on validation set performance. The 

framed network has the following hyperparameters tuned: 

3.5.1 Learning Rate: The learning rate is one of the hyperparameters that tells us how big of 

a step to take in the direction of the gradient when performing gradient descent. A low 

learning rate would give us a slower-to-converge model, but this may be useful as the lower 

means that we are less likely to overshoot the optimal solution, but if it is too low, then 

convergence will take a much longer amount of time to come, while a smaller learning rate 

may converge in fewer epochs, having it too large could instead cause overshooting [24]. 

3.5.2 Batch Size: Number of training examples utilized in one iteration of the training 

process. [25] explains how a larger batch may provide a more stable gradient estimate but at 

the cost of requiring more memory. 

3.5.3 No. of CNN Filters: Number of filters in each of the convolutional layer controls the 

model capacity to learn different local features [22]. 

3.5.4 Transformer Attention head size: Number of attention heads per Transformer layer 

[12] if many heads are defined, it indicates how many attention heads will be created in 

parallel thus how many parts of the sequence the model can focus on at the same time 

3.5.5 Dropout Rate: A regularization strategy that helps mitigate over-fitting by randomly 

reducing a fraction of input global units to be 0 (zero) during training [26]. 
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Figure: Hyper Parameter Tuning 

Hyperparameter tuning usually includes methods like grid search, random search, or bayesian 

optimization. These approaches exhaustively search the hyperparameter space and track the 

performance of the model on a validation set for each configuration. Frequently, k-fold cross-

validation is employed to validate the model, enhancing its robustness for the unseen data 

[27]. 
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Figure: Algorithm Flowchart 

3.6 Fusion and Classification 

Finally, the extracted features in both sets of layers of CNN and Transformer component are 

concatenated and classified. During the fusion step, the extracted feature representations of 

both components are fused together so that a global feature vector summarizes both local and 

global characteristics of the heart sound signal [28]. 

A final prediction is made by passing the resulting fused feature vector through one or more 

fully connected layers. The last layer is softmax or sigmoid depending on whether the task is 

multiclass or binary classification. The softmax layer generates a probability distribution for 

the classes, denoting the confidence of the model that the input heart sound signal belongs to 

a given class [29].  

Combining the advantages from CNN and transformers, the proposed framework gives a 

thorough and accurate classification of heart sound signals, overcoming the deficiency of 

existing models and providing a firmer approach for cardiac health diagnosis. 
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Figure: Overall system diagram 

Algorithm: Hybrid CNN-Transformer Model for Heart Sound Classification 

Signal Preprocessing 

Input: 

 Raw heart sound signals S= {𝑆1, 𝑆2, 𝑆3, 𝑆4..…….. 𝑆𝑛} 

Output: 

 Preprocessed heart sound signals S′ 

1. Begin 

2. Noise Reduction: 

 Apply noise reduction techniques (e.g., wavelet denoising) to filter out 

background noise from each signal 𝑆𝑖€ S. 

3. Segmentation: 

 Segment the heart sound signal Si′  into individual heartbeats. 

4. Normalization: 

 Normalize each segmented heartbeat to standardize the amplitude and duration. 

5. Return the preprocessed signals S’. 

6. End 

CNN-Enhanced Local Feature Extraction 

Input: 

 Preprocessed heart sound signals S′. 

Output: 

 Local feature maps 𝐹𝐶𝑁𝑁 

1. Begin 

2. Convolutional Layer 1: 

 Apply convolution operation to S′ with an appropriate filter size and number 

of filters. 

 Apply ReLU activation function for non-linearity. 
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 Apply max-pooling to reduce spatial dimensionality, resulting in an 

intermediate feature map. 

3. Convolutional Layer 2: 

 Apply convolution operation to the output of Convolutional Layer 1. 

 Apply ReLU activation function. 

 Apply max-pooling to further reduce spatial dimensionality. 

4. Return the local feature maps 𝐹𝐶𝑁𝑁 

5. End 

 

Transformer-Based Long-Range Dependency Modeling 

Input: 

 Local feature maps 𝑭𝑪𝑵𝑵 

Output: 

 Contextualized feature representations 𝑭𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓 

1. Begin 

2. Positional Encoding: 

 Add positional encodings to the local feature maps 𝑭𝑪𝑵𝑵 to capture the order 

of the sequence. 

3. Self-Attention Mechanism: 
 Apply a self-attention mechanism to focus on important parts of the sequence, 

producing weighted feature maps. 

4. Feedforward Network: 
 Pass the self-attended feature maps through a feedforward neural network to 

extract contextualized features. 

5. Transformer Blocks: 
 Repeat the self-attention and feedforward steps over multiple Transformer 

blocks. 

6. Return the Transformer-enhanced feature representations 𝑭𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓 

7. End 

 

 

Fusion and Classification 

Input: 

 Local feature maps 𝐹𝐶𝑁𝑁 

 Transformer-enhanced feature representations 𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟. 

Output: 

 Classification results 𝑦𝑖̂ 

1. Begin 

2. Feature Fusion: 

 Concatenate the feature maps 𝐹𝐶𝑁𝑁  and 𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 to create a unified 

feature vector 𝐹𝐹𝑢𝑠𝑖𝑜𝑛. 

3. Dense Layers: 

 Pass the fused features through dense layers to further process and prepare for 

classification. 

4. Output Layer: 

 Apply a softmax or sigmoid layer to produce the final classification results 𝑦𝑖̂ 

5. Return the classification results 𝑦𝑖̂. 
6. End 
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4. Experimental Setup 

4.1 Datasets 

In this study, we used the PhysioNet/CinC Challenge 2016 dataset [30] since it is a 

benchmark dataset in the number of heart sounds classification studies. It consists of 3,153 

heart sound recordings (raw audio) from 764 patients, collected from various stethoscope 

devices. PumpItUp17Dataset: Includes audio recordings of heart sounds, both normal and 

pathological, from human subjects with 95 · 105 BPM, and were labeled according to the 

European Society of Cardiology classification proposed by the authors. With recordings of 

varied lengths (ranging from a few seconds to over a minute) and diverse acoustic 

environments and patient conditions, the dataset is rich and varied. 

If that is the case, one of the vital steps is data preprocessing, which ensures the heart sound 

signals quality to be inputted into the model. Processing steps were: 

i. Noise Filteration: Background noise was filtered using wavelet denoising [31] and 

adaptive filtering techniques. Crucially, this was necessary to enhance the signal-to-

noise ratio, as recordings were made in non-clinical environments. 

ii. Segmentation: The heart sound signals (S1 and S2) for each of the individual 

heartbeats were segmented out using Hidden Semi-Markov Models (HSMMs) [32]. 

This segmentation allowed to extract meaningful features informative about 

individual cardiac events. 

iii. Normalization: Each extracted heart beat was normalized to account for different 

recording devices and patient characteristics including body position that introduced 

variability. We performed normalization to ensure uniformity of amplitude and 

duration of the signals to ensure data set consistency [33]. 

This entire preprocessing pipeline ended in getting a clean and segmented dataset that was 

later used for training through the hybrid CNN-Transformer based classification model. 

4.2 Evaluation Metrics 

Various evaluation metrics are employed to appraise the performance of the proposed CNN-

Transformer model. In classification tasks, the following are common measures, especially in 

biomedical signals [34]: 

a. Correctness: The ratio of correctly replicated heart sound signals by heart sound signals 

of all samples. 

b. Sensitivity (Recall): Percentage of abnormal heart sounds that is correctly detected by 

the model (True Positive Rate). In the medical domain of diagnostic models, where a 

positive diagnosis becomes a necessity (in the case of a target disease), it becomes 

paramount to reduce the false negative rate, as the absence of diagnosis can be 

catastrophic. 

c. Specificity: The model is predicting normal heart sounds accurately. Your specialisation 

is crucial to preventing a false positive which may result in inappropriate medical 

treatment. 

d. F1-score: It is the harmonic means between the precision and recall giving an 

equilibrium measurement for a model's accuracy (taking into account false positives 

and false negatives). F1-score is useful when we have imbalanced datasets (PhysioNet 

dataset being one of those — very few abnormal samples compared to normal 

samples). 

e. Area Under the ROC Curve (AUC—ROC): AUC-ROC assesses the classification 

performance, i.e., the capacity of the model to distinguish classes, using a variety of 

threshold settings to understand the trade-off between sensitivity and specificity [35]. 
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 4.3 Experimental Environment 

We used a high-performance computing environment to allow efficient model training. The 

hardware and software requirements are listed below: 

Hardware Environment: The system used in our experiments was configured with an 

NVIDIA Tesla V100 GPU of 32 GB VRAM capacity. To complement the size of the dataset 

and the extensive demands for computation, the system incorporated 128 GB of RAM and an 

Intel Xeon Gold 6226R processor 

Software Setup: The model was implemented using Python 3.8 Some key libraries that are 

used are TensorFlow 2.8 and PyTorch 1.11 for deep learning, Scikit-learn 1.0 for the 

evaluation metrics and Librosa 0.9 which will help to preprocess the signal. Then 

hyperparameter tuning using Optuna 2.10 was performed to efficiently explore the 

hyperparameter space [36]. 

 Hyperparameter Values: The most important hyperparameters were optimized using 

a grid search strategy: 

 Learning Rate: After experimenting was set to 0.0001 for stable convergence [37]. 

 Batch Size: A batch size of 32 was selected to trade-off between memory efficiency 

and stability of gradient. 

 CNN Filters: In subsequent layers, 64, 128 and 256 were established. 

 Transformer Attention Heads: 8 attention heads were used for simultaneous 

focusing on several aspects of the sequence. 

 Dropout rate: In order to minimize the danger of overfitting and to improve model 

overallizability, a dropout rate of 0.3 has been applied [38]. 

Hyperparameter tuning and the experimental environment were necessary to make sure the 

model had high accuracy and robustness in the classification of heart sound signals. 

5. Results 

5.1 Quantitative Analysis 

Below is a comparison of the performance metrics for different models: 

Model 
CNN-

Transformer 

CNN-

only 

RNN-

only 

Accuracy 

(%) 
93.5 88.7 85.3 

Sensitivity 

(%) 
91.2 85.4 83.1 

Specificity 

(%) 
94.7 90.3 87.6 

F1-score 

(%) 
92.3 87 84.2 

AUC-

ROC 
0.96 0.89 0.87 

5.2 Qualitative Analysis 

To visualize the performance of the model, we created the following plots: 
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Performance Metrics Plot: The following figure is used to compare the performance metrics 

(Accuracy (ACC); Sensitiviy (SENS), Specificity (SPEC), F1-score and AUC-ROC) of the 

CNN-Transformer, CNN-Only and RNN-Only models. 

 

Figure: Performance Metrics Plot 

Confusion Matrices: A confusion matrix was created for each model to visualize true positives, 

false positvies, true negatives and false negatives: 

 
Confusion Matrix for CNN-Transformer and CNN only 

 
Confusion Matrix for RNN only

To qualitatively assess the performance of the CNN-Transformer model, we analyzed cases 

when it succeeded and when it failed. The model showed excellent accuracy in discerning 

specific murmurs and differentiating them from normal heart sounds across different acoustic 

noise backgrounds. Confusion Matrices for the visualization of results show a higher true 

positive fraction for murmur detection of our model compared to both baseline models [41]. 

For examples where the model performed  

poorly, for instance, distinguishing benign extra sounds from pathologic murmurs, the errors 

were assessed. Precision-recall curves showed that the precision decreased for heavily noisy 

samples or overlapping signals, reflecting the difficulties in these complex cases. To evaluate 

if the model was subject to overfitting during training, we examined the corresponding 
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training and validation loss curves, which demonstrated convergence without a significant 

divergence between training and validation losses [42]. 

5.3 Ablation Study  

We performed an ablation study to see how each of the CNN and Transformer contributed to 

the performance of the model. Where: CNN: Convolutional Neural Network−only result 

Transformer: Transformer−only result. The results showed that for CNN−only and 

Transformer−only model, the accuracy was 88.7% and 86.5% respectively. However, in use, 

the accuracy increased to an impressive 93.5%, confirming the complementary character of 

the element [43]. 

The ablation study further assessed the selection of hyperparameters used in the tuning 

process, suggesting that optimization improved model performance by around 4%. Requires 

hyper-parameter tuning of important parameters such as number of CNN filters and 

Transformer attention heads for maximum performance [44]. 

6. Discussion 

6.1 Performance Comparison 

The proposed CNN-Transformer model showed better performance than conventional 

machine learning methods and existing deep learning models. Conventional techniques 

include but are not limited to Support Vector Machines (SVMs) and k-Nearest Neighbors (k-

NN) that heavily depend on manual features and have a relatively poor performance to 

generalize over datasets [45]. Deep learning models such as standalone CNNs and RNNs 

improve over conventional methods by learning features automatically, but they still struggle 

with local feature learning vs sequence modeling. The hybrid CNN-Transformer model was 

developed to overcome these challenges by combining the local pattern extraction ability of 

CNN with the long-range dependency capture ability of transfromer, achieving better 

accuracy, sensitivity and specificity [46]. This is particularly pronounced when you consider 

the model's performance on the PhysioNet/CinC Challenge 2016 dataset. The hybrid 

outperformed standalone CNN and RNN models across all dominant metrics. 

6.2 Effect of hyperparameter tuning 

Hyperparameter tuning was very significant in improving the result of CNN-Transformer. 

Tuning Hyperparameters such as learning rate, batch size, and the number of CNN filters and 

Transformer attention heads. In the practical part, we applied the grid search and Optuna 

methods for hyperparameter tuning, where we achieved a significant improvement (about 4% 

accuracy gain) to combat overfitting and achieve better generalization for different datasets 

[47]. The tuning process also enabled a balanced architecture between the complexity of the 

CNN and Transformer components, allowing the model to learn both local and global 

features without becoming overly computationally intensive. 

6.3 Limitations 

Though there is remarkable improvement, the proposed framework cannot avoid some 

limitations. A major improvement point is its sensitivity to noise, especially in recordings of 

heart sounds performed in open environments with a lot of background noise. Although 

wavelet denoising was performed, there were still cases where the model failed, e.g., as 

observed after examining the false-positive rate for more complex acoustic environments 

[48]. A second limitation is the challenge of generalization: model performance is likely to 

vary across different datasets due to differences in recording conditions, stethoscope types, 

and patient demographics. Future directions could include methods based on domain 

adaptation or training on larger or more diverse datasets [49] to address these issues. 

Furthermore, the Transformer part, although capable of capturing long-range dependencies, 

which is where causal language models typically face challenge, introduces computational 

overhead as it computes full attention over the input and can impose challenges in terms of 

scaling the model to cater to real-time tasks in potentially low-power environments. 



 An Improved CNN-Transformer Hybrid Architecture for Heart Sound Classification 

SEEJPH Volume XXV, 2024, ISSN: 2197-5248;Posted:25-10-2024 

  

2759 | P a g e  
 

7. Conclusion 

7.1 Summary 

In heart sound classification, the CNN-Transformer model was devised with an innovative 

hybrid method to efficiently leverage the local feature extraction capabilities of 

Convolutional Neural Networks (CNNs) while benefiting from the long-range dependency 

modeling strength provided by Transformer architectures. As a result, the original heart sound 

is combined with system elimination of 2 for its size and the elaboration of attention 

mechanism and deep learning model, which in the proposed framework, is efficient to build 

attention, wisdom model of logic specificity_source to eliminate class noise under the 

attention. Hyperparameter tuning was instrumental in enhancing overall model performance, 

and there was a 4% increase in accuracy as a result. These results also suggested that the 

CNN-Transformer model performs significantly better than traditional machine learning 

approaches and standalone deep learning models, therefore it can be viewed as a very 

efficient model for detecting cardiac anomaly. 

7.2 Future Work 

Below we provide some future directions for improvement of the proposed heart sound 

classification framework which shows good performance: 

i. Integration of Additional Models: Future work may consider adding other deep 

learning models, e.g. LSTMs or GRUs, into our architecture to improve time-series 

modeling. Multi-stream architectures, which combine various kinds of models, might 

yield richer representations of the heart sound data. 

ii. Attention-based Visualization: Attention-based visualization technique can also be 

applied for better understanding interpretability of the model. This not only aids in the 

deciphering of the model’s findings but also enhances the interpretability and 

validation of the model in the clinical realm. 

iii. Application to Other Biomedical Signals: The proposed framework could be 

adapted and extended to other types of biomedical signals such as electrocardiograms 

(ECGs) or respiratory sounds for a generalized diagnostic tool. This would enable 

specific techniques in the model to be adapted over an array of modalities and lead to 

unified approaches for various diagnostic needs. 

iv. Evolved Noise Reduction: Future work may also use noise reduction techniques to 

better use this model in real-world situations. The issues introduced by noise in 

recordings can be handled with techniques such as adaptive filtering, or frequency and 

time-specific augmentation methods added during training. 

v. Domain Adaptation: Techniques for domain adaptation could be applied to enhance 

the model's generalizability across different datasets and clinical settings. Such 

techniques would make the model more robust to differences in distributions of data 

caused by variations in recording equipment, patient demographics, and other 

environmental factors. 

vi. Resource-efficient transformer architectures: The transformer component is the 

one with substantial computational burden; thus, future work can investigate efficient 

transformer variants, e.g., linear transformers or memory-efficient attention 

mechanisms, to enhance deployment feasibility to resource-constrained healthcare 

settings. 
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